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Introduction

Ma recherche se situe en probabilités pour la biologie. Je suis particulièrement intéressée par
la modélisation et l’analyse probabiliste de la diversité génétique, de la biodiversité, et de leurs
dynamiques temporelles et spatiales. Ce manuscrit, après une introduction destinée à expliquer
mes motivations, mes approches et le contexte général de mes recherches, est divisé en trois
parties qui portent sur des questions biologiques différentes, abordées en développant des modèles
mathématiques différents, et avec des collaborateurs différents.

Approche générale, motivation et parcours Mon travail consiste à répondre à une ques-
tion biologique à l’aide de modèles mathématiques que je crée puis que j’étudie. Une des difficultés
de ce domaine est de définir une bonne question biologique, c’est-à-dire une question qui inté-
resse les biologistes, qui soit bien posée, et à laquelle on puisse répondre à l’aide de modèles
suffisamment simples pour être étudiés mathématiquement. Bien que le vivant présente en géné-
ral des comportements complexes, c’est justement cette simplicité qui doit permettre de capter
l’essence des phénomènes biologiques considérés, mais aussi d’obtenir des résultats et de déve-
lopper des techniques mathématiques qui puissent présenter un intérêt aussi pour la recherche
en mathématiques. Enfin, la prise en compte des données, leur modélisation et leur utilisation
pour mieux modéliser et comprendre le vivant est aussi un enjeu très important de mon domaine
de recherche, que j’essaye d’aborder. J’ai travaillé souvent avec des biologistes, toujours avec des
mathématiciens, et nous avons essayé de réaliser des travaux qui puissent concerner ces deux
communautés.

Durant ma thèse au Centre de Mathématiques Appliquées de l’École Polytechnique, sous la
direction de Sylvie Méléard, je me suis intéressée à la modélisation et l’étude probabiliste de
l’évolution génétique des populations à reproduction sexuée. J’ai ensuite occupé pendant un an
un poste de Lectrice Hadamard, au Laboratoire de Mathématiques d’Orsay. Durant cette année
j’ai eu la chance immense de découvrir un domaine et une communauté complètement différents,
en travaillant avec Christophe Giraud notamment sur la combinaison de jeux de données scien-
tifiques et citoyens afin de mieux évaluer l’état et la dynamique de la biodiversité. Les travaux
que j’ai menés par la suite, au Laboratoire de Mathématiques d’Orsay en tant que maîtresse de
conférence, puis dans l’unité Mathématiques et Informatique Appliquées de Paris-Saclay (IN-
RAE) à AgroParisTech en tant que professeur junior, ont pour la plupart un lien fort avec l’un
de ces deux domaines de probabilité appliquées à la biologie : l’évolution génétique des popula-
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tions à reproduction d’une part, et la combinaison de données environnementales, ou biologiques,
d’autre part. Je vais maintenant en présenter une partie, ainsi que les perspectives de recherche
et d’encadrement que j’envisage pour les prochaines années.

Impacts de la reproduction sexuée et de la démographie sur la diversité génétique
La composition génétique d’une population à reproduction sexuée (c’est-à-dire l’ensemble des
génomes de tous les individus qui la composent) est le résultat de processus très complexes
et qui ne sont pas indépendants les uns des autres. Parmi eux on notera par exemple le choix
d’un partenaire de reproduction et donc la construction progressive d’une population munie d’un
graphe de parenté, la transmission du génome le long de ce graphe et les mutations ayant lieu lors
de cette transmission, la traduction de ce génome en termes de capacité de survie des individus, et
de reproduction des couples d’individus. Étudier la composition génétique de ces populations est
un problème difficile et important, qui peut-être abordé de façons multiples, allant d’approches
très théoriques à des techniques beaucoup plus appliquées et proches des données.

Durant ma thèse je me suis intéressée à la dynamique de la composition génétique d’une po-
pulation à reproduction sexuée et de taille variable, dans laquelle les individus sont caractérisés
par leur génome à un seul locus diploïde et bi-allélique (Coron (2015)). J’ai pour cela créé et
étudié des modèles probabilistes individus-centrés, plus précisément des processus de naissance
et mort avec interactions, qui sont caractérisés par un certain nombre de paramètres démogra-
phiques, qui déterminent la reproduction et la mort des individus. J’ai alors montré l’existence
d’échelles lentes-rapides dans la dynamique de ces processus, et étudié leur comportement quasi-
stationnaire.

Par la suite j’ai continué à me passionner pour ce sujet qui est très riche, mais avec des
approches, des questions, et des collaborateurs différents. Cette partie de mon travail peut se dé-
couper en 3 thématiques : étude de l’interaction entre démographie et diversité génétique, étude
de la composition génétique d’une population biparentale, et étude du rôle de la reproduction
sexuée dans l’évolution génétique des populations. Je me suis penchée sur l’interaction réciproque
entre démographie et diversité génétique dans le cas de populations à reproduction sexuée, d’une
part avec Sylvie Méléard et Denis Villemonais (Coron et al. (2019)), et d’autre part avec Diala
Abu Awad (Abu Awad et Coron (2018)). Dans Coron et al. (2019), nous avons montré que le
comportement quasi-stationnaire de la diversité génétique d’une population est caractérisé par
l’intégrabilité d’un processus de diffusion stochastique de dimension 1, qui est elle-même assurée
par un critère explicite sur les paramètres démographiques. Dans Abu Awad et Coron (2018)
nous avons étudié l’impact de ces paramètres démographiques (liés à la notion de traits d’his-
toires de vie, définie par les généticiens des populations pour étudier l’évolution darwinienne des
populations, Flatt et Heyland (2011)) sur la vitesse de fixation d’allèles et donc sur la perte de
diversité génétique. Ensuite, j’ai étudié, avec Yves Le Jan (Coron et Le Jan (2022, 2024a,b)), la
composition génétique d’une population à reproduction sexuée. Dans cette série de travaux, pré-
sentée dans le Chapitre 1 de ce manuscrit, nous étudions la proportion asymptotique du génome
d’une population biparentale, qui provient d’un ancêtre donné. Notre travail s’inscrit ainsi dans
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la lignée de l’article Derrida et al. (2000) et s’ajoute aux travaux Chang (1999); Lambert et al.
(2018); Newman et al. (2024) qui explorent la structure génétique des populations biparentales
avec des approches très différentes, intéressantes et complémentaires. Nous prouvons en particu-
lier que dans un modèle de Moran biparental neutre, la contribution asymptotique d’un ancêtre
au génome de la population considérée est soit égale à 0 (avec probabilité 1/2, ce qui signifie
que l’ancêtre a une descendance non éternelle), soit suit une loi exponentielle de paramètre 1/2

(Théorème 1.1). En ajoutant de la sélection à ce modèle nous analysons l’impact de la sélection
sur la proportion de génome transmise par un individu. A titre d’exemple, nous montrons que si
une population est initialement constituée de 1% d’individus très favorisés génétiquement, alors
ils seront en temps long en moyenne à l’origine de 19% du génome de la population (Théorèmes
1.2 et 1.3). Enfin, avec Manon Costa, Hélène Leman et Charline Smadi (Coron et al. (2018b,
2021, 2022)), j’ai étudié l’impact des préférences d’appariement sur la spéciation et la diversité
génétique. Dans ces travaux, menés en partie en collaboration avec les biologistes de l’évolution
Fabien Laroche et Violaine Llaurens, et présentés dans le Chapitre 2 de ce manuscrit, nous nous
intéressons plus précisément à l’homogamie (le fait pour un individu de se reproduire plus fa-
cilement avec un individu qui lui ressemble) et à l’hétérogamie. Nous déterminons notamment
les conditions d’émergence de l’homogamie (Théorème 2.3), comment l’homogamie peut engen-
drer la spéciation (Théorème 2.7) et la quantité de diversité génétique permise par l’hétérogamie
(Théorèmes 2.8 et 2.9). Nos travaux constituent une nouvelle façon d’étudier mathématiquement
le rôle des préférences d’appariement dans l’évolution génétique des populations et la spéciation.
En particulier le fait de considérer des modèles stochastiques individu-centrés permet d’étudier
des quantités importantes, comme la probabilité d’invasion d’un mutant homogame dans une
population, déterminée dans le Théorème 2.3.

Amélioration du suivi de la biodiversité par combinaison de données citoyennes et
scientifiques Le développement et l’étude de modèles probabilistes visant à une meilleure
compréhension des systèmes biologiques me passionne. Toutefois, pour que ce travail me paraisse
véritablement pertinent, il est essentiel pour moi d’avoir une connaissance des données et de
concevoir des modèles permettant de les exploiter pour répondre à des questions biologiques.
Durant mon année de post-doctorat au laboratoire de Mathématiques d’Orsay j’ai travaillé avec
Christophe Giraud, Romain Julliard, et Clément Calenge, sur la question de l’exploitation de
données issues de programmes de sciences citoyennes, afin d’améliorer l’évaluation et le suivi
de la biodiversité. Les programmes de sciences citoyennes, ou sciences participatives, sont mis
en place par des scientifiques, mais utilisent le temps, l’énergie et la bonne volonté des citoyens
afin de récolter des observations. Ils sont en général caractérisés par un protocole d’observation
assez léger, voire inexistant, mais aussi par un très grand nombre de données récoltées, ce qui
incite à chercher une façon de les calibrer pour les utiliser de façon pertinente. Dans le cas qui
nous a intéressés nous avions à notre disposition deux jeux de données d’observations d’oiseaux
en Aquitaine : l’un récolté par des professionnels selon un protocole précis (avec notamment
une information du temps passé à observer et la consigne pour les observateurs de rapporter
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toutes leurs observations) et l’un issu d’observations faites par des citoyens, sans contrainte
particulière. Notre but était, à partir de ces jeux de données, de fournir des cartes d’abondances
relatives d’espèces, c’est-à-dire d’être capable de comparer le nombre d’individus d’une espèce
donnée, à deux endroits différents de l’espace considéré. Estimer ces abondances relatives est
possible à l’aide du seul jeu de données professionnel, du fait du protocole très strict qu’il impose.
Néanmoins les estimations auxquelles il conduit sont très bruitées, car il contient peu de données.
Notre approche a consisté à coupler, au travers d’un modèle probabiliste, ces deux jeux de
données, de façon à bénéficier à la fois de la calibration des données scientifiques et de l’abondance
des données citoyennes, et améliorer ainsi la précision des estimations d’abondances relatives
d’espèces obtenues avec le seul jeu de données professionnel (Théorème 3.1). Notre approche
est originale : la plupart des travaux visant à calibrer les données issues de programmes de
sciences participatives consistent plutôt à essayer de les débiaiser en estimant le temps passé
par les observateurs sur le terrain ou plus grossièrement en remplaçant ce temps par le nombre
d’observateurs, ou le nombre d’observations. Ce travail ouvre de nombreuses perspectives, car
cette situation dans laquelle plusieurs jeux de données sont issus d’une même réalité biologique
est de plus en plus fréquente.

Perspectives Mes recherches actuelles et perspectives de recherche sont développées à la fin
de chaque chapitre. Elles sont centrées sur l’étude de l’évolution génétique et de la dynamique
de populations à reproduction sexuée, mais portent sur des questions et applications biologiques
différentes, abordées avec des approches mathématiques aussi très variées. J’aimerais notamment
comprendre l’impact de l’hybridation et de la structure des familles sur le génome de populations
à reproduction sexuée. Je cherche par ailleurs à modéliser la dynamique de populations d’insectes
contrôlées par la technique de l’insecte stérile, et à étudier l’optimisation de cette technique. Je
voudrais enfin estimer la démographie et l’histoire migratoire de populations à partir de données
génétiques, de données de comptages, ou par combinaison de ces différents types de données. Les
applications de ces différentes questions se situent en agronomie, génétique animale, histoire de
l’Homme et santé.



13

Chapitre 1

Génétique des populations biparentales

1.1 Introduction

Cette partie de mon travail a été réalisée en collaboration avec Yves Le Jan (Université Paris-
Saclay). Notre objectif était d’étudier la composition génétique des populations à reproduction
sexuée, donc les populations dans lesquelles le génome d’un individu est une fonction aléatoire du
génome de ses deux parents. Cette question de recherche est très importante, par exemple pour
comprendre l’avantage conféré aux espèces par la reproduction sexuée (Agrawal (2001)), mais
surtout pour inférer, à partir de données génomiques, l’histoire démographique ainsi que certains
paramètres régissant la dynamique des populations et l’histoire de vie des individus, comme les
paramètres de sélection ou les préférences d’appariement. Cet objectif d’inférence est notamment
à l’origine du développement et de l’étude des coalescents séquentiellement Markoviens qui sont
des modèles approchés et très étudiés, de graphes ancestraux avec recombinaison (McVean et
Cardin (2005)). Malgré ces enjeux, la génétique des populations à reproduction sexuée a fait
l’objet de relativement peu d’articles portant sur l’étude de modèles probabilistes exacts, et reste
un domaine à découvrir. On peut néanmoins en distinguer quelques-uns : les deux articles Chang
(1999) et Linder (2009) ont une approche "backward in time", au travers de laquelle ils étudient
notamment deux temps en remontant dans le passé d’une population (représentée par un modèle
de Wright-Fisher biparental dans le premier article et par un modèle de Moran biparental dans le
second) : le premier temps au bout duquel il existe dans la population un ancêtre commun à tous
les individus de la population présente, et le premier temps au bout duquel tous les ancêtres sont
soit ancêtre de tous les individus de la population présente, soit ancêtre d’aucun individu de la
population présente. Étudier les échelles de temps en génétique des populations est essentiel pour
comprendre la diversité génétique, qui est assurée par l’accumulation de mutations au cours du
temps. L’article Derrida et al. (2000) a une approche très différente : les auteurs donnent, sous
une hypothèse de grande taille de population, la loi de la proportion asymptotique de génome
transmise par un ancêtre donné dans une population modélisée par un modèle de Wright-Fisher
biparental. Dans Lambert et al. (2018), les auteurs modélisent le génome d’un individu par le
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segment [0, 1], et ce génome est transmis, avec recombinaison, par chaque couple de parents à
leur enfant : en cas de recombinaison le génome d’un des deux parents est coupé à une position
uniforme du segment [0, 1] et le génome de l’enfant est alors constitué du début du génome d’un
de ses parents, suivi de la fin du génome de l’autre. Pour chaque position x ∈ [0, 1], la généalogie
d’un échantillon d’individus est alors coalescente, et finit dans un ancêtre commun à tous les
individus. Les auteurs s’intéressent alors au coloriage de ce segment en fonction de l’identité de
l’ancêtre qui a transmis son génome à l’ensemble de la population, à chaque point x du segment
[0, 1]. Ils donnent la dynamique et la loi stationnaire de ce coloriage. L’article Pfaffelhuber et
Wakolbinger (2023) présente une approche plus proche de la génétique quantitative : les auteurs
s’intéressent à la transmission des éléments transposables au travers de la reproduction sexuée.
Chaque individu porte un certain nombre d’éléments génétiques transposables, et un enfant
hérite d’une fonction aléatoire du nombre d’éléments total portés par ses parents. Les auteurs
montrent l’existence d’une échelle lente rapide dans ce modèle et caractérisent la distribution
stationnaire de la fréquence d’individus portant un certain nombre d’éléments transposables.
Enfin, l’article Newman et al. (2024) étudie l’impact de l’autofécondation dans le génome des
populations à reproduction sexuée et démontre l’importance de prendre en compte le pédigrée
dans cette analyse.

Notre travail s’inscrit dans la lignée de l’article Derrida et al. (2000), dans le sens où notre
approche consiste à étudier la contribution asymptotique d’un ancêtre au génome d’une popula-
tion.

1.2 Modèle

Base du modèle Nous nous plaçons dans le cadre où la population considérée suit un modèle
de Moran biparental avec sélection. Plus précisément, notons N le nombre d’individus dans la
population, qui sera constant et sera un paramètre clé du modèle (le seul, dans le cas le plus
simple). Les individus sont numérotés à tout instant par i ∈ I = {1, 2, ..., N}. La population évo-
lue à des pas de temps discrets, indicés par n ∈ N. Plus précisément à chaque pas de temps, deux
individus sont choisis uniformément au hasard, ils se reproduisent, et leur descendant remplace
un troisième individu choisi indépendamment (mais pas nécessairement uniformément, plus de
détails seront donnés juste après) dans la population. Notons qu’un individu peut éventuellement
se reproduire avec lui-même mais cet événement n’a lieu qu’avec probabilité 1/N à chaque pas
de temps. Sous cette dynamique la taille de population est constante, et à chaque pas de temps,
au maximum 4 individus sont impliqués dans les changements de la population. Le fait que la
composition de la population évolue très peu à chaque pas de temps nous permettra d’obtenir des
résultats plus forts que ceux obtenus dans Derrida et al. (2000) pour le modèle de Wright-Fisher,
dans lequel l’intégralité de la population est remplacée à chaque étape. Notons respectivement
µn, πn, κn ∈ I les positions de la mère, du père, et de l’individu qui meurt au temps n. Les
individus mère et père ont pour l’instant des rôles parfaitement symétriques.
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Ajoutons de la sélection Le modèle présenté précédemment est dit neutre lorsque l’individu
qui meurt au temps n est choisi uniformément dans la population. Une partie de notre travail, no-
tamment les résultats les plus forts que nous obtenons, portent sur ce cas neutre. Néanmoins nous
avons aussi étudié une version plus générale de ce modèle, qui permet de prendre en compte et
d’étudier l’impact de la sélection génétique sur la composition génétique d’une population. Pour
cela supposons maintenant que les individus peuvent être de deux types : avantagé ou non avan-
tagé, et que cet avantage est conféré par une mutation qui se transmet de façon Mendélienne
et haploïde. Plus simplement cela veut dire que lors d’une reproduction, l’un des deux parents,
choisi uniformément au hasard, transmettra son statut d’avantagé ou non avantagé, à l’enfant
produit. Comme les deux parents sont choisis uniformément au hasard dans la population, on
supposera par convention que c’est la mère qui transmet son statut d’avantage. Enfin, cet avan-
tage se manifeste au niveau de la mort des individus : on associe aux individus désavantagés un
poids 1+ s (s ∈ R+ ∪{+∞}) et aux individus avantagés un poids 1, et au moment de choisir un
individu qui meurt, chaque individu est choisi avec une probabilité proportionnelle à son poids.
Ainsi, tant que le nombre d’avantagés est différent de 0 ou de N , un individu désavantagé a une
probabilité de mourir 1 + s fois plus élevée qu’un individu avantagé. Notons que lorsque s est
infini, cela signifie que l’individu qui meurt est choisi uniformément parmi les individus désavan-
tagés. Notons aussi que lorsque s = 0 le modèle est neutre, c’est-à-dire que tous les individus
sont équivalents.

Transmission du génome et poids génétique des ancêtres Le processus stochastique
({µn, πn}, κn)n∈N se traduit par un graphe de parenté, appelé pédigrée et noté G, qui est le
support de la transmission génétique. Plus précisément, comme représenté dans la Figure 1.1, G
est construit sur I×Z+ en traçant à chaque temps t ∈ Z+ deux flèches orientées partant de (κt, t+
1) et allant vers (πt, t) et (µt, t), et N−1 flèches orientées de (x, t+1) à (x, t) pour tout x ∈ I\{κt}.
On notera {Gn, n ∈ Z+} la filtration associée au processus stochastique ({µn, πn}, κn)n∈Z+ .

Time

0
1

n

...

X0
(n)

Xn
(n)

Figure 1.1 – Ce graphe représente le pédigrée d’une population de 8 individus, durant 7 pas de
temps. Le chemin rouge représente la généalogie d’un gène, qui est la réalisation d’une marche
aléatoire sur ce graphe, en remontant le temps.
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Notons que le pédigrée n’est pas indépendant du statut d’avantage des individus et ne donne pas
non plus cette information, qui est donnée par le processus stochastique complet (µn, πn, κn)n∈N
qui donne toute la dynamique de la population, à condition que les positions des individus
initialement avantagés soient aussi connues. La Figure 1.2 donne un exemple de pédigrée dans
lequel les individus avantagés sont en plus représentés en rouge.

Figure 1.2 – Cette figure représente simultanément le pédigrée G et l’ensemble des individus
avantagés (en rouge) durant 10 pas de temps, pour une population de 5 individus. Les nombres en
bas donnent la probabilité pour qu’un gène échantillonné dans chacun des individus proviennent
initialement de l’unique individu avantagé. Dans cet exemple le poids génétique de cet individu
initialement avantagé vaut 21/8 = 1 + 1/2 + 1/2 + 1/4 + 3/8.

Une fois que ce graphe est créé, si un gène (morceau de génome supposé insécable) est
échantillonné dans un individu de la population, alors ce gène provient nécessairement de l’un de
ses deux parents, choisi uniformément au hasard. La Figure 1.1 montre en rouge la généalogie,
c’est-à-dire l’histoire d’un gène échantillonné au temps n dans l’individu 5. À ce stade il serait
naturel de se pencher sur la question de la recombinaison, et de son impact sur le génome des
individus. C’est une question difficile, qui est notamment abordée dans Lambert et al. (2018).
De notre côté nous supposons plus simplement que le génome est constitué d’une infinité de
loci (un locus est un emplacement du génome), qui se comportent de façon indépendante sur
le pédigrée. Autrement dit, si l’on échantillonne cette fois deux gènes dans un individu, alors
comme précédemment chacun de ces gènes provient de l’un des deux parents de l’individu, et
l’on suppose ici ces provenances sont indépendantes, sachant ces deux parents. La généalogie de
k gènes échantillonnés, c’est-à-dire l’histoire de k morceaux de génomes est donc un ensemble de
k marches aléatoires sur le pédigrée, indépendantes sachant ce pédigrée. Sous cette hypothèse,
le pédigrée étant donné, la probabilité pour qu’un gène échantillonné uniformément dans la
population provienne d’un ancêtre donné peut être vue comme la proportion de génome issue de
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cet ancêtre. C’est la quantité qui va nous intéresser. Plus formellement, notons (X(n)
k , n−k)0≤k≤n

la généalogie d’un gène (c’est-à-dire le numéro de l’individu dans lequel l’ancêtre de ce gène se
trouvait à chaque temps t = n− k ≤ n, dont un exemple est donné en Figure 1.1). Le processus
(X

(n)
k , n− k)0≤k≤n est une marche aléatoire sur le graphe G et l’on considère

Wn(i, j) = P(X(n)
n = j|X(n)

0 = i,Gn) (1.1)

La quantité Wn(i, j) modélise donc la proportion de génome de l’individu i qui provient de
l’ancêtre j, ou encore la contribution de l’ancêtre j au génome de l’individu i. De la même façon,
la quantité

Mn(j) =
N∑
i=1

Wn(i, j) (1.2)

est égale à N fois la probabilité pour qu’un gène échantillonné uniformément au temps n pro-
vienne de l’ancêtre j, au temps 0. On appellera par la suite cette quantité le poids génétique de
l’ancêtre j.

1.3 Résultats

Cas neutre Notre premier résultat porte sur le cas neutre, pour lequel s = 0. Le premier
point du théorème dit que la contribution génétique d’un ancêtre donné est asymptotiquement
la même dans tout individu vivant au temps présent. Le second point du théorème donne une loi
explicite pour cette contribution asymptotique, lorsque la taille de population tend vers l’infini.

Théorème 1.1. (i) Pour tout j ∈ I, il existe une variable aléatoire A(j) telle que pour tout
i ∈ I,

Wn(i, j) −−−→
n→∞

A(j) p.s.

En particulier,
Mn(j) −−−→

n→∞
M∞(j) = NA(j) p.s.

(ii) Pour tout l ≤ N et tous k1, ..., kl ∈ Z+,

E
(
Mk1

∞ (1)...Mkl
∞(l)

)
−−−−→
N→∞

l∏
i=1

2ki−1ki! . (1.3)

De façon équivalente, la contribution génétique asymptotique d’un ancêtre, est égale à 0

avec probabilité 1/2 (ce qui signifie que l’ancêtre en question a une descendance qui n’est
pas éternelle), et sinon, suit une loi exponentielle de paramètre 1/2.

Quelques éléments de preuve de ce théorème et des résultats qui suivront (Théorèmes 1.2,
1.3, et Proposition 1.4) sont donnés dans la Section 1.4. Les deux points du théorème sont
illustrés dans la Figure 1.3. Pour cette figure nous lançons une seule simulation du modèle
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Figure 1.3 – Nous lançons une seule simulation du modèle de Moran biparental neutre, pour
N = 100 (à gauche) ou N = 10000 (à droite) : en bleu nous traçons les poids des ancêtres
triés dans l’ordre croissant, après 100000 pas de temps. En rouge nous donnons la fonction
x 7→ −1x>N/2 × 2 ln(2(1− x/N)).

de Moran biparental neutre, pour une durée assez longue. Nous obtenons que les poids des
individus, triés dans l’ordre croissant, se stabilisent vers une distribution ; cette distribution
converge vers l’inverse généralisée de la fonction de répartition de la variable aléatoire qui vaut 0
avec probabilité 1/2 et sinon suit une loi exponentielle de paramètre 1/2. Rappelons que dans le
cas monoparental le comportement asymptotique du poids d’un ancêtre est très différent : pour
toute taille de population N , le poids asymptotique d’un ancêtre est égal à 0 avec probabilité
(N − 1)/N et sinon vaut N ; il existe un unique ancêtre commun à tous. Le Théorème 1.1
montre donc un comportement beaucoup plus complexe de la transmission génétique dans les
populations à reproduction sexuée.

Notons que le poids asymptotique d’un ancêtre a une loi différente dans le modèle de Mo-
ran biparental et dans le modèle de Wright-Fisher biparental, étudié dans l’article Derrida et al.
(2000). En particulier dans Derrida et al. (2000), les auteurs obtiennent que 80% des ancêtres ont
une descendance éternelle. Cette différence est intéressante car ces modèles sont souvent consi-
dérés comme étant équivalents à changement d’échelle de temps près (pour ces deux modèles la
dynamique de la proportion d’un allèle donné dans la population converge, une fois correctement
renormalisée, vers une diffusion de Wright-Fisher). La différence que nous obtenons est liée au
fait que lorsque la taille de population N est très grande, pour le modèle de Wright-Fisher bipa-
rental la loi du nombre d’enfants d’un individu est proche d’une loi de Poisson tandis que pour le
modèle de Moran biparental elle est proche d’une loi géométrique à valeurs dans N (d’espérance
2 dans les deux cas). Ces deux distributions sont différentes et notamment la loi géométrique a
une probabilité de valoir 0 beaucoup plus élevée (Figure 1.4).
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Figure 1.4 – Histogrammes de la loi géométrique (à gauche) et de la loi de Poisson (à droite)
d’espérance 2.

Sélection infinie Revenons maintenant au cas avec sélection décrit dans la Section 1.2 et no-
tons Yn l’ensemble des individus avantagés au temps n et Yn son cardinal, c’est-à-dire le nombre
d’individus avantagés au temps n. Nous nous demandons dans ce cas, de façon assez naturelle,
quelle est la probabilité pour qu’un gène échantillonné dans la population provienne des Y0 indi-
vidus initialement avantagés. Connaître cette probabilité permet de quantifier l’avantage conféré
par une mutation avantageuse, en termes de quantité de génome transmis. En particulier on sait
que cette probabilité sachant le pédigrée est une variable aléatoire (en tant que fonction détermi-
niste du pédigrée qui est aléatoire), dont l’espérance vaut Y0/N dans le cas neutre. Nous allons
donc maintenant chercher à calculer cette espérance dans le cas avec sélection. Concentrons-nous
pour l’instant sur le cas extrême où la force de la sélection est infinie (s = +∞), et la popula-
tion est initialement composée d’un seul individu avantagé. Le fait que s soit infini signifie qu’à
chaque pas de temps, l’individu choisi pour mourir est choisi uniformément parmi les individus
désavantagés. Dans ce cas, nous avons Yn+1 ∈ {Yn, Yn + 1} pour tout n, donc le nombre d’indi-
vidus avantagés croit avec le temps. Notons TN le temps d’atteinte de N par (Yn)n∈N, qui est
fini presque sûrement. Alors le théorème suivant donne l’ordre de grandeur de la contribution
génétique de l’individu initialement avantagé, une fois que tous les individus sont avantagés,
c’est-à-dire au temps TN . Notons que cette contribution continuera à évoluer après le temps TN ,
de façon stochastique, mais son espérance restera la même car le modèle sera devenu neutre.

Théorème 1.2. Le poids MTN
(1) de l’individu initialement avantagé (numéroté 1, par conven-

tion) au temps TN satisfait

E(MTN
(1)) ∼

N→+∞

4√
π

√
N.

Ce théorème permet en quelque sorte de quantifier l’impact maximal de la sélection : en l’ab-
sence de sélection, la probabilité pour qu’un gène échantillonné uniformément dans la population
provienne d’un ancêtre donné est égale à 1/N . Lorsque la sélection est extrêmement forte, cette
probabilité devient de l’ordre de 4√

πN
pour l’individu initialement avantagé (elle reste donc en

revanche de l’ordre de 1/N pour les autres individus). L’étude de la loi de ce poids asymptotique
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est un projet en cours.

Sélection finie Lorsque la sélection n’est pas infinie, le nombre d’individus avantagés peut finir
par toucher 0, avec une probabilité non nulle. Néanmoins cette probabilité tend vers 0 lorsque
la taille de population tend vers l’infini et que la proportion d’individus avantagés est proche
d’une constante positive a ∈ (0, 1). Nous nous sommes pour l’instant placés dans ce contexte.
En travaillant sur le cas de sélection infinie nous avons compris que deux quantités importantes
ont un comportement plutôt simple. Définissons pour tout temps n ∈ N,

Un =
∑
l∈Yn

∑
l′∈Y0

Wn(l, l
′), et Vn =

∑
l /∈Yn

∑
l′∈Y0

Wn(l, l
′).

La quantité Un ∈ [0, N ] (resp. Vn ∈ [0, N ]) représente le poids génétique des individus initialement
avantagés dans les individus avantagés (resp. désavantagés) au temps n. Tant que Yn /∈ {0, N},
si l’on note U(A) la loi uniforme sur un ensemble discret A, on a notamment

Un

Yn
= P(X(n)

n ∈ Y0|X(n)
0 ∼ U(Yn),Gn),

et
Vn

N − Yn
= P(X(n)

n ∈ Y0|X(n)
0 ∼ U(I \ Yn),Gn).

Les deux quantités

UTN

N
1TN<∞ =

UTN

YTN

1TN<∞ et
VT0

N
1T0<∞ =

VT0

N − YT0

1T0<∞

peuvent donc être interprétées comme la contribution génétique des individus avantagés dans la
population une fois que la mutation s’est fixée ou a disparu, respectivement. Elles donnent en
effet la probabilité pour qu’un gène échantillonné uniformément dans la population devenue mo-
nomorphe, provienne d’un des individus initialement avantagés. La Figure 1.1 donne un exemple
de telle probabilité, lorsque l’on part d’un seul individu avantagé : dans cette figure au bout de 9

pas de temps tous les individus sont avantagés, le poids de l’individu initialement avantagé vaut
21/8, donc la probabilité pour qu’un gène échantillonné uniformément au temps 9 provienne
de cet individu vaut 21/8 × 1/N = 21/40. Pour étudier cette quantité limite UTN

/N qui nous
intéresse nous étudions le processus stochastique de dimension 3,

(Zn)n∈N =

(
Yn
N

,
Un

N
,
Vn

N

)
n∈N

.

Ce processus n’est pas Markovien, néanmoins lorsque la taille de population tend vers l’infini et
la proportion initiale d’individus avantagés tend vers a, sa dynamique peut être approchée par
celle d’un système dynamique dont la solution est explicite. C’est l’objet du prochain théorème.
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Théorème 1.3. Soit a ∈ (0, 1). Si la proportion initiale d’individus avantagés Y0
N tend vers a en

probabilité quand N tend vers l’infini, alors pour tout c ∈ R+,

sup
0≤t≤c

∥Z⌊Nt⌋ − zt∥ −→
N→∞

0 (1.4)

en probabilité, où (zt)t≥0 = (yt, ut, vt)t≥0 satisfait

yt = F−1

(
a1+s

1− a
exp(st)

)
où F (x) =

x1+s

1− x

ut = yt
a

1+s
2s

(1− a)
1
2s

(1− yt)
1
2s

y
1+s
2s

t

+

∫ yt

a

(1− x)
1
2s

x
1+s
2s

[
1

2
+

1

2s

1

1− x

]
dx


vt = (1− yt)

a
1+s
2s

(1− a)
1
2s

∫ yt

a

(1− x)
1
2s

x
1+s
2s

[
1

2
+

1

2s

1

1− x

]
dx.

(1.5)

Ce théorème donne la dynamique limite du triplet (Zn)n∈N, et est en partie illustré dans
la Figure 1.5. Notons que si la proportion initiale d’individus avantagés tend vers a, alors la
probabilité pour que la mutation avantageuse se fixe, c’est-à-dire pour que (Yn)n∈N finisse par
toucher N , tend vers 1. Notre résultat suivant étend alors le Théorème 1.3 jusqu’au temps
d’intérêt TN (qui tend vers l’infini lorsque N tend vers l’infini), pour l’espérance de Un

N , c’est-à-
dire la probabilité pour qu’un gène échantillonné dans la population provienne d’un des individus
initialement avantagés.

Proposition 1.4. Soit a ∈ (0, 1). Si la proportion initiale d’individus avantagés Y0
N tend vers a

en probabilité quand N tend vers l’infini, alors

E
(
UTN

N
1TN<∞

)
−→
N→∞

a
1+s
2s

(1− a)
1
2s

(∫ 1

a

(1− u)
1
2s

u
1+s
2s

[
1

2
+

1

2s

1

1− u

]
du

)
.

Notons que les deux processus stochastiques (Un
N )n∈Z+ et (Vn

N )n∈Z+ continuent à évoluer après
le temps inf(T0, TN ) (leur dynamique sera détaillée dans la Section 1.4 donnant les éléments de
preuves des résultats). Néanmoins leurs espérances respectives deviennent constantes après ce
temps, car la population devient neutre. La Proposition 1.4 donne donc, sous une hypothèse
de grande taille de population et proportion initiale macroscopique d’individus avantagés, l’es-
pérance de la contribution génétique de ces individus avantagés (ou encore la probabilité pour
qu’un gène échantillonné au temps présent provienne de l’un de ces individus). Lorsque la sélec-
tion est très forte (s → ∞), la Proposition 1.4 nous dit que si la proportion initiale d’avantagés
vaut a, alors ces individus avantagés seront en temps long à l’origine d’une proportion 2

√
a− a

du génome de la population, en moyenne. A titre d’exemple, si initialement la population est
constitué de 1% d’individus fortement avantagés, alors ces individus finiront par être respon-
sables de 19% du génome de la population. Ce dernier résultat est illustré dans la Figure 1.5.
La Figure 1.6 montre aussi l’impact maximal de la sélection, en traçant simplement les fonctions



22 Chapitre 1. Génétique des populations biparentales

Figure 1.5 – Gauche : Pour N = 1000, s = 10 (sélection très forte), et a = 1%, 20 réalisations
de la dynamique jointe de la proportion d’individus avantagés (en rouge) et de la contribution
génétique des individus initialement avantagés(en bleu). Droite : Pour différentes valeurs de
la proportion initiale d’individus avantagés et s = 10 encore, 20 valeurs de la contribution
génétique des individus initialement avantagés (points bleus), leur moyenne empirique (en jaune),
l’approximation théorique de leur espérance (en bleu), ainsi que les approximation théorique de
leur espérance pour s = 0 (en violet) et s infini (en rouge), une fois que la population est devenue
monomorphe.

x → x et x → 2
√
x−x qui donnent les proportions initiales et finales de génome provenant d’une

proportion x d’individus initialement très fortement avantagés. Pour finir, quelques éléments de
comparaisons sont donnés dans la partie perspectives de ce chapitre (Section 1.5).

Pour finir, en partant d’une proportion a d’individus avantagés on perd le caractère aléatoire
du poids asymptotique des individus avantagés, qui était bien caractérisé dans le cas neutre, par
le Théorème 1.1. En particulier le poids des avantagés ne peut plus s’annuler en temps long alors
qu’un seul individu a, dans le cas neutre, une probabilité égale à 1/2 d’avoir une descendance
non éternelle. La proposition suivante donne la probabilité pour qu’un seul individu initialement
avantagé (un mutant) ne contribue pas, en temps long à la population.

Proposition 1.5. Supposons ici que le nombre initial d’avantagés est égal à 1 (Y0 = 1). Alors
la probabilité pour que le poids asymptotique de l’avantagé initial soit nul converge, lorsque N

tend vers l’infini, vers
3
2 + 1

1+s −
√

9
4 − s

(1+s)2

2
.

Nous retrouvons bien sûr la valeur de 1/2 obtenue dans le Théorème 1.1, dans le cas où
s = 0, et nous remarquons aussi que cette probabilité tend vers 0 lorsque s tend vers l’infini, ce
qui est naturel. La Figure 1.7 donne la densité du poids d’un individu initialement très fortement
avantagé, après un grand nombre de pas de temps. La proposition 1.5 renseigne sur la probabilité
de l’atome en 0 de cette distribution. Le reste de la distribution dépend du nombre de pas de
temps dans la simulation et fait l’objet de travaux en cours.
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Figure 1.6 – Nous traçons les deux courbes x → x (en bleu) et x → 2
√
x − x (en orange). La

différence entre les deux courbes montre l’impact maximal de la sélection, c’est-à-dire la différence
entre les proportions initiales et finales de génome provenant d’une proportion x d’individus
initialement très avantagés.

Figure 1.7 – Cette figure donne la densité du poids d’un ancêtre mutant fortement avantagé,
pour N = 10000 et s = 30 (sélection très forte), au bout d’un temps long.
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Bilan des résultats Nous avons défini un modèle de Moran biparental avec sélection et nous
étudions pour ce modèle la contribution génétique asymptotique d’un individu donné, à l’en-
semble de la population, c’est-à-dire la proportion du génome de la population qui provient de
cet ancêtre, ou encore la probabilité pour qu’un gène échantillonné au temps présent provienne
de cet ancêtre. Dans le cas le plus simple, c’est-à-dire en l’absence de sélection, nous montrons
que cette probabilité, multipliée par N , converge en loi lorsque la taille de population N tend
vers l’infini, vers une variable aléatoire dont la loi est explicite : elle vaut 0 avec probabilité
1/2 et sinon suit une loi exponentielle de paramètre 1/2. Dans un cas de sélection infinie le
nombre d’avantagés croit avec le temps, et nous montrons que l’espérance de la proportion de
génome transmise à la population par un unique individu initialement avantagé, est de l’ordre
de 4√

πN
(contre 1/N dans le cas neutre). Dans le cas le plus général de sélection finie, le nombre

d’avantagés ne croit plus avec le temps, mais à condition de supposer que la proportion initiale
d’avantagés, a, est strictement positive, nous prouvons que l’espérance de la proportion de gé-
nome transmise à la population par l’ensemble des individus initialement avantagés converge
lorsque la taille de population N tend vers l’infini, vers

a
1+s
2s

(1− a)
1
2s

(∫ 1

a

(1− u)
1
2s

u
1+s
2s

[
1

2
+

1

2s

1

1− u

]
du

)

(contre a dans le cas neutre). Lorsque s tend vers l’infini, cette quantité tend vers 2
√
a−a. Cette

quantification de l’impact de la sélection sur la proportion de génome transmise est illustré dans
la Figure 1.5 (figure de droite).

1.4 Éléments de preuves

Éléments de preuve du Théorème 1.1

Équation stationnaire pour déterminer la loi limite Pour démontrer le Théorème 1.1
nous commençons par trouver la loi asymptotique du poids d’un ancêtre. En effet, lorsque N tend
vers l’infini, cette loi doit satisfaire une équation stationnaire qui peut être résolue (cette station-
narité sera perdue dans le cas avec sélection). Plus précisément notons h(λ) = E(exp(−λM∞(1)))

la transformée de Laplace du poids asymptotique de l’individu 1 (qui ne dépend pas du numéro
de cet individu, puisque l’on se place dans le cas neutre pour ce premier théorème). En supposant
(sans le démontrer dans un premier temps) l’indépendance des poids asymptotiques des ancêtres,
nous trouvons que cette transformée de Laplace doit satisfaire l’équation

h(λ) =
1

3
+

2

3
h

(
λ

2

)
h(λ).

En cherchant une solution à cette équation sous la forme (1 + aλ)/(1 + bλ) nous obtenons que
ce poids asymptotique a une loi simple : il est soit égal à 0 avec probabilité 1/2, soit suit une loi
exponentielle de paramètre 1/2.
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Marches aléatoires indépendantes sur le pédigrée Ce premier élément de preuve nous
permet de déterminer les moments asymptotiques donnés dans le terme de droite de l’Équation
(1.3). La suite de la preuve du Théorème consiste alors notamment à prouver la convergence des
moments

E
(
Mk1

∞ (1)...Mkl
∞(l)

)
vers ces valeurs asymptotiques lorsque la taille de population tend vers l’infini. Pour cela, nous
posons k =

∑l
j=1 kj , et nous introduisons k marches aléatoires indépendantes sur le pédigrée G,

qui partent de positions uniformes et indépendantes sur I au temps n et remontent le temps :
(X

(1,n)
i , n−i)i≤n, (X(2,n)

i , n−i)i≤n, ..., (X(k,n)
i , n−i)i≤n. Alors par définition de Mn(j) (Équations

(1.1) et (1.2)), pour tous k1, k2, ..., kl ∈ Z+ tels que
∑l

j=1 kj = k, on a

E
(
Mk1

n (1)...Mkl
n (l)

)
= Nk P(X(1,n)

n = ... =X(k1,n)
n = 1, ...,

X
(k1+...+kl−1+1,n)
n = ... = X(k1+...+kl,n)

n = l).

En faisant tendre n vers l’infini et en notant νN,k la loi stationnaire de la chaîne de Markov(
X

(1,n)
n , X

(2,n)
n , ..., X

(k,n)
n

)
n∈N

qui est irréductible et apériodique, à valeurs dans Ik, on a alors

que pour tous k1, k2, ..., kl ∈ Z+ tels que
∑l

j=1 kj = k,

E
(
Mk1

∞ (1)...Mkl
∞(l)

)
= NkνN,k(1, ..., 1, 2, ..., 2, ..., l, ..., l)

où dans le terme de droite, le nombre j ∈ {1, 2, ..., l} est répété kj fois. Il reste alors à prouver
que

NkνN,k(1, ..., 1, 2, ..., 2, ..., l, ..., l) −−−−−→
N→+∞

l∏
i=1

2ki−1ki!. (1.6)

La loi stationnaire νN,k de (X
(1,n)
n , ..., X

(k,n)
n )n∈N est l’unique mesure de probabilité solution de

l’équation
νN,k = νN,kQ

(N,k) (1.7)

où Q(N,k) est la matrice de transition de la chaîne de Markov (X
(1,n)
n , ..., X

(k,n)
n )n∈N. Nous cher-

chons donc à montrer d’une part que pour tout x ∈ Ik, νN,k(x) est équivalent à C(x)N−k, et
d’autre part que C(x) a la forme appropriée, c’est-à-dire que C(x) =

∏N
i=1 2

Ki(x) où Ki(x) est le
nombre d’occurrences du nombre i dans le vecteur x. Nous montrons ces deux points l’un après
l’autre.

Projection Le premier point est démontré en introduisant une projection assez naturelle (nous
verrons pourquoi juste après), notée (Y

(k)
n )n∈N, de la chaîne de Markov (X

(1,n)
n , ..., X

(k,n)
n )n∈N,

sur un sous-espace de Ik. Plus précisément, pour tout x = (x1, ..., xk) ∈ Ik, définissons la configu-
ration associée à x, comme l’ensemble {x} = {k1, k2, ..., kl} des nombres de répétitions de chaque
élément de I présent dans x. Le nombre l, aussi noté L({x}), est appelé la taille de la configuration



26 Chapitre 1. Génétique des populations biparentales

{x}. Par exemple, si N ≥ 4, k = 4 et et x = (3, 1, 4, 4) alors {x} = {1, 1, 2} et donc L({x}) = 3.
Nous posons alors pour tout n ≥ 0, Y (k)

n la configuration associée à (X
(1,n)
n , ..., X

(k,n)
n ). Cette pro-

jection est naturelle du fait de l’invariance de la loi de la chaîne de Markov (X
(1,n)
n , ..., X

(k,n)
n )n∈N

d’une part par changement de numérotation des N sites et d’autre part par changement de nu-
mérotation des k particules. Grâce à cette invariance, la projection (Y

(k)
n )n∈N est en effet encore

une chaîne de Markov, et

νN,k(x) ∼
νN,k({x})

N l

∏l
i=1 ki!

k!
×

k∏
j=1

nj !, (1.8)

où νN,k({x}) = limn→∞ P(Y (k)
n = {x}) est la probabilité asymptotique que la chaîne de Markov

(X
(1,n)
n , ..., X

(k,n)
n )n∈N soit dans la configuration {x}.

Distribution stationnaire de la chaîne de Markov projetée La fin de la preuve consiste
à étudier cette nouvelle quantité νN,k({x}). La chaîne de Markov (Y

(k)
n )n∈N prend ses valeurs

dans l’espace

Sk = {y = {k1, ..., kl}|kj ∈ N∗ ∀j,
l∑

i=1

ki = k}

qui ne dépend plus de N . A chaque pas de temps, la chaîne de Markov (Y
(k)
n )n∈N peut, partant

de l’état {k1, ..., kl}, soit rester dans le même point, soit sauter dans une autre configuration, qui
aura pour taille l−1 (si l ≥ 2), l, ou l+1 (si l ≤ k−1). Les probabilités de transition d’un état à
l’autre sont d’un ordre de grandeur qui dépend de la différence de taille entre les configurations
initiale et finale, comme représenté dans la Figure 1.8. En particulier la probabilité pour que la
taille de configuration diminue ou reste sur place est de l’ordre de C/N2 où C dépend de l’état
de départ, tandis que la probabilité pour que la taille de configuration augmente est d’ordre
C/N où C dépend de l’état de départ (une façon d’interpréter ce résultat est de remarquer que
lorsque la taille de population est grande, les marches aléatoires sur le pédigrée ont tendance à
se trouver sur des sites différents : elles coalescent à un taux beaucoup plus faible qu’elles ne se
séparent). Notre preuve s’appuie pour finir sur la caractérisation des distributions stationnaires
donnée dans Shubert (1975). Plus précisément, pour toute configuration y ∈ Sk introduisons
l’ensemble G(y) des arbres couvrants orientés enracinés et dirigés vers y, qui sont inclus dans le
graphe de transition de Y (k). Pour tout arbre orienté g ∈ G(y), définissons son poids π(g) comme
le produit des probabilités de ses arêtes, pour la chaîne de Markov Y (k). Alors d’après Shubert
(1975), la distribution stationnaire de la chaîne de Markov Y (k) est telle que pour tout y ∈ Sk,

νN,k(y) =

∑
g∈G(y) π(g)∑

y′∈Sk

∑
g′∈G(y′) π(g

′)
. (1.9)

Maintenant d’après les équivalents des probabilités de transition évoqués précédemment, la pro-
babilité π(g) d’un arbre couvrant orienté g pointé vers y est d’ordre au maximum

C(T )

N2(k−l)

1

N#Sk−1−(k−l)
=

C(T )

N#Sk−1+(k−l)
, (1.10)
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Figure 1.8 – Représentation schématique de l’espace d’états et des probabilités de transition
de la chaîne de Markov Y (k). Les états sont rangés de haut en bas en fonction de leur taille :
l’état le plus haut correspond au cas où les k particules sont dans des états différents, tandis que
l’état le plus bas correspond au cas où toutes les particules sont dans le même site.

où la quantité C(T ) ne dépend pas de N , et il existe un tel arbre ayant effectivement une pro-
babilité de cet ordre. Cet arbre peut être construit comme représenté dans la Figure 1.9, en
commençant par tracer un chemin strictement descendant (au sens où la taille de la configura-
tion décroît strictement le long de ce chemin), allant de {1, 1, ..., 1} à y puis en y ajoutant des
arêtes strictement ascendantes partant de chaque configuration qui n’est pas sur ce chemin. En
combinant le calcul (1.10) avec l’Équation (1.9), on obtient que

νN,k({x}) ∼ C({x})N
L({x})

Nk
quand N tend vers l’infini. (1.11)

Revenons enfin à la chaîne de Markov qui nous intéresse, (X(1,n)
n , ..., X

(k,n)
n )n∈N. Les équations

(1.8) et (1.11) nous donnent que sa loi stationnaire satisfait pour tout x ∈ Ik :

νN,k(x) ∼
K({x})
Nk

quand N tend vers l’infini, (1.12)

où K({x}) = C({x})
∏l

i=1 ki!
k! ×

∏k
j=1 nj ! ne dépend pas de N .
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Figure 1.9 – Représentation schématique d’un arbre couvrant pointé vers la configuration
y = {x}, dont la probabilité est d’ordre maximal.

Il reste à prouver que K({x}) =
∏l

i=1 2
ki−1ki!. Pour cela, rappelons que la loi stationnaire

νN,k de (X
(1,n)
n , ..., X

(k,n)
n )n∈N est l’unique mesure de probabilité solution de

νN,k = νN,kQ
(N,k).

En prenant le premier ordre (connu, grâce à l’Équation (1.12)) de cette équation, on obtient que
K est solution de

K({k1, ..., kl})×

l − 2
l∑

µ=1

(
1

2

)kµ

 = 2
l∑

µ=1

kµ−1∑
i=1

(
1

2

)i
(

kµ
i

)
K({k1, ..., kµ − i, ..., kl, i}).

(1.13)
Nous concluons la preuve du Théorème 1.1 en montrant que les solutions de cette équation (qui
peut être vue comme une équation de récurrence sur la taille des configurations) sont toutes
proportionnelles, puis que pour toute constante C, K({x}) = C ×

∏l
i=1 2

ki−1ki! est une solution
de cette équation, et enfin que cette constante C vaut nécessairement 1 si l’on veut que νN,k soit
une mesure de probabilité.

Éléments de preuve du Théorème 1.2 et de la Proposition 1.4

Lorsque l’on ajoute de la sélection, la population est constitué à chaque instant de Yn individus
avantagés, et ce nombre Yn est une chaîne de Markov. Dans le cas où la sélection est infinie, cette
chaîne de Markov peut à chaque pas de temps soit augmenter de 1, soit rester sur place. Elle
est par ailleurs absorbée en N . Le Théorème 1.2 donne l’ordre de grandeur de l’espérance du
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poids limite de l’unique individu initialement avantagé, donc l’ordre de grandeur de la probabilité
asymptotique pour qu’un gène échantillonné dans la population provienne de cet individu. Pour
obtenir ce résultat nous supposons que l’individu initialement avantagé est l’individu 1, par
convention, et nous définissons deux quantités assez naturelles, présentées aussi dans la Section
1.3 :

Un =
∑
l∈Yn

Wn(l, 1), et Vn =
∑
l /∈Yn

Wn(l, 1).

Les quantités Un et Vn donnent les poids génétiques de l’individu initialement avantagé, respecti-
vement dans les individus avantagés et les individus désavantagés au temps n. Ces quantités sont
naturelles car elles consistent à regarder le poids de chaque individu dans chaque autre individu,
en les regroupant par statut d’avantage (les individus ayant le même statut à un instant donné
étant échangeables).

La preuve du Théorème 1.2 consiste à considérer que la trajectoire de (Yn)n∈N est connue, et à
regarder la dynamique de la population, sachant cette réalisation de trajectoire. Concrètement,
en notant (Fn, n ∈ N) la filtration associée à la chaîne de Markov Y , le modèle défini dans
la Section 1.2 nous donne, lorsque le paramètre de sélection s est infini, que la dynamique de
(Un, Vn)n∈N satisfait

E(Un+1|Yn+1 = Yn,Fn) = Un,

E(Un+1|Yn+1 = Yn + 1,Fn) = Un +
Un

2Yn
+

1

2N
(Un + Vn),

E(Vn+1|Yn+1 = Yn,Fn) = Vn − Vn

N − Yn
+

Vn

2(N − Yn)
+

1

2

Un + Vn

N
,

E(Vn+1|Yn+1 = Yn + 1,Fn) = Vn − Vn

N − Yn
.

Rappelons maintenant que la chaîne de Markov (Yn)n∈N part de 1 puis pour tout k ∈ N∗ saute de
k à k+1 au bout d’un temps qui suit une loi géométrique (à valeurs dans N∗) dont le paramètre
dépend de k. Pour tout k ∈ {1, ..., N}, notons Sk = inf{n ∈ N|Yn = k}, uk = E(USk

), et
vk = E(VSk

). Grâce à la dynamique simple de (Yn)n∈N, on peut montrer que la suite (finie) de

vecteurs

(
uk
vk

)
k∈{1,...,N}

satisfait pour tout k ∈ {1, ..., N − 1}

(
uk+1

vk+1

)
= Ak

(
uk
vk

)
(1.14)

où

Ak =
+∞∑
l=0

Lk(Hk)
l = Lk[I −Hk]

−1
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(le nombre l représente ici le nombre de fois où la chaîne de Markov Y est restée au niveau k

avant de passer au niveau k + 1) et

Hk =

(
1− k

N

)(
1 0
1
2N 1− 1

2(N−k) +
1
2N

)
,

Lk =
k

N

(
1 + 1

2k + 1
2N

1
2N

0 1− 1
N−k

)
.

La fin de la preuve consiste à observer alors que si ũk = uk
k et ṽk = vk

N−k pour tout k ∈
{1, ..., N − 1}, alors

ũk+1 − ṽk+1 =
2Nk +N + k

(2N + 1)(k + 1)
(ũk − ṽk) (1.15)

pour tout k+1 < N . Ceci nous donne une expression de la différence ũk − ṽk comme un produit
que nous pouvons contrôler :

2√
πk

(
1− C

k
− C(log(k) + 1)

N

)
≤ xk ≤ 2√

πk

(
1 +

C

k

)
.

En observant finalement, grâce à l’Équation (1.14) à nouveau, que pour tout k ∈ {1, ..., N − 1},

ṽk+1 =
xk

2N + 1
+ ṽk

nous pouvons alors donner un équivalent de vN et donc de uN lorsque N tend vers l’infini.
La Proposition 1.4 (correspondant au cas où le paramètre de sélection s est fini) est prouvée

de la même façon, sauf que les équations de récurrences obtenues sont différentes, et nous utilisons
aussi des arguments de monotonie des espérances de Un/Yn et Vn/(N −Yn) en fonction de n. Le
détail de la preuve est donné dans la note Coron et Le Jan (2024c), Théorème 2.9).

Éléments de preuve du Théorème 1.3

Le Théorème 1.3 dit que le processus stochastique Zn = (Yn/N,Un/N, Vn/N)n∈N qui prend
ses valeurs dans [0, 1]3 et est constitué de la proportion d’avantagés dans la population au temps
n, Yn/N , et du poids génétique des avantagés initiaux parmi les avantagés (Un/N) et les désavan-
tagés (Vn/N) de la population, converge vers une unique solution d’un système dynamique. Ce
processus (Zn)n∈N part de l’état (a, a, 0), où a ∈ (0, 1) est la proportion initiale d’avantagés dans
la population. Pour démontrer le Théorème 1.3 nous étudions la dynamique de ce processus sto-
chastique. Tout d’abord, comme dans le cas à sélection infinie, le processus stochastique (Yn)n∈N
est une chaîne de Markov, et est même assez simple : il s’agit du changement de temps aléatoire
d’une marche aléatoire simple sur {0, 1, ..., N}, absorbée en 0 et N . En notant (Hn)n∈N la filtra-
tion associée au processus (Zn)n∈N, on obtient par ailleurs que lorsque la taille de population N

tend vers l’infini,

E (Zn+1 − Zn|Hn) =
1

N
g(Zn) + o

(
1

N

)
,
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où

g(y, u, v) =
( y(1− y)s

y + (1 + s)(1− y)
,

u

2
+

u+ v

2
y − u

y + (1 + s)(1− y)
,

v

2
+

u+ v

2
(1− y)− (1 + s)v

y + (1 + s)(1− y)

)
pour tout (y, u, v) ∈ [0, 1]3. Ce calcul nous indique la forme du système dynamique limite, dont
nous déterminons la forme de l’unique solution partant de (a, a, 0) (donnée dans l’Équation (1.5)),
notamment en utilisant la fonction (yt, t ≥ 0) comme un changement de temps. Nous obtenons
alors par des techniques assez classiques la convergence du processus stochastique (Z⌊Nt⌋)t≤c vers
cette solution jusqu’à tout temps fini c.

1.5 Perspectives

Ce travail de recherche a de nombreuses perspectives et a pour commencer été poursuivi par
les encadrements de Luce Breuil (stage de 3e année de l’École Polytechnique) d’une part, et
Raphaël Tran Thanh et Juan Mardomingo Sanz (projet de Master 2 Mathématiques pour les
sciences du vivant) d’autre part. Luce Breuil a montré la généralisation du Théorème 1.1 dans le
cas où les individus ont m parents, avec m entier naturel fixé supérieur à 2. Elle a aussi étudié
le poids asymptotique des ancêtres dans le cas où les individus peuvent soit se reproduire avec
eux-mêmes (auto-fécondation) avec une certaine probabilité p, soit se reproduire avec un autre
individu (allo-fécondation). Pour ce travail de stage Luce a obtenu le prix de stage de la chaire
Modélisation Mathématique et Biodiversité. L’impact de l’auto-fécondation sur la composition
génétique d’une population est aussi étudié dans l’article très récent Newman et al. (2024),
qui cherche aussi à prendre en compte le rôle du pédigrée dans cette question, et j’aimerais
comprendre les liens entre les résultats obtenus dans cet article et ceux que nous pouvons fournir
en utilisant l’approche que nous avons empruntée, avec Yves Le Jan d’une part et avec Luce
Breuil d’autre part. Raphaël Tran Thanh et Juan Mardomingo Sanz étudient actuellement une
situation dans laquelle la sélection n’a pas lieu lors de la mort mais lors de la reproduction. Plus
précisément ils supposent que la population est constituée de deux types d’individus, et que le
type d’un individu influence d’une part sa capacité de reproduction, et d’autre part le choix du
type de son partenaire. La question est alors de déterminer dans quelle mesure ces préférences
d’appariement influencent la contribution génétique d’un ancêtre donné et aussi de comparer les
forces de la sélection naturelle et de la sélection par préférences d’appariement, ce qui peut être
fait notamment en prenant un paramètre de sélection infini. Ils obtiennent en effet des résultats
quantitatifs similaires à celui que nous obtenons dans le Théorème 1.2 : lorsque la sélection
implique que l’un des deux parents est nécessairement du type avantagé, et si la population
est initialement constituée de 1% d’individus avantagés, alors ceux-ci seront en temps long à
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l’origine de 14% du génome total de la population. Je co-encadre ce projet avec Diala Abu Awad
(Université Paris-Saclay) qui est notamment spécialiste du rôle des systèmes de reproduction dans
l’évolution génétique des populations et avec laquelle j’ai déjà étudié des modèles probabilistes de
démo-génétique des populations et le rôle des traits d’histoire de vie dans l’évolution génétique
(Abu Awad et Coron (2018)). Enfin ce sujet de recherche qui repose sur un modèle probabiliste
très simple peut aussi être relié à d’autres approches d’étude de la diversité génétique qui sont
beaucoup plus appliquées, notamment les coalescents séquentiellement Markoviens et l’estimation
de paramètres démographiques à partir de données génétiques. Sur des thématiques proches je
vais prochainement co-encadrer, avec Paul Verdu (Musée de l’Homme) et Tristan Mary-Huard
(INRAE), le stage de Master 2 et la thèse de Gaspard Dousson-Lys, qui portera sur l’estimation
de paramètres d’histoires migratoires, et l’estimation de paramètres de sélection naturelle, à
partir de données de mesure d’hybridation dans le génome d’individus échantillonnés dans une
population qui résulte des contributions successives de populations sources. Je co-encadre déjà
le projet de master 2 de Gaspard Dousson-Lys et Angelo Ciambelli sur des questions liées.
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Chapitre 2

Préférences d’appariement : évolution
et rôle dans la diversité génétique

Le chapitre précédent portait sur l’étude de la proportion du matériel génétique d’une popu-
lation à reproduction sexuée, qui est issue d’un ancêtre donné. Nous avons en particulier étudié
l’impact de la sélection sur cette proportion et j’ai mentionné comme perspective de recherche
l’étude de l’impact des préférences d’appariement sur la composition génétique d’une population
à reproduction sexuée. Cette dernière question rejoint les sujets d’un ensemble de travaux de
recherche que j’ai menés avec Manon Costa (Institut de Mathématiques de Toulouse), Hélène
Leman (INRIA, Lyon) et Charline Smadi (INRAE, Grenoble). Ce chapitre porte sur l’étude, à
partir de modèles individus centrés, de l’évolution des préférences d’appariement et de leur rôle
sur la composition génétique des populations.

2.1 Introduction

La sélection naturelle, introduite dans Darwin (1859), repose sur les mutations du génome,
qui, de façon aléatoire, apparaissent et sont transmises par un individu à son descendant. Cer-
taines de ces mutations n’ont pas d’impact sur la survie ou la reproduction de leur porteur,
tandis que d’autres peuvent lui conférer un avantage, ou un désavantage. Les versions mutées du
génome qui donnent un avantage à leur porteur ont alors plus de chances d’être transmises et
sont ainsi sélectionnées, au travers du comportement des individus (Dawkins (1976)). Ce mélange
de mutations avantageuses et neutres permet une diversité génétique au sein des populations, et
aussi une adaptation progressive et différenciée des populations à différents environnements. Ces
adaptations différenciées peuvent aller jusqu’à un arrêt des flux de gènes entre des populations
adaptées à des environnements différents : c’est ce que l’on appelle la spéciation écologique. La
spéciation est un processus évolutif complexe au cours duquel deux groupes d’individus d’une
même espèce finissent par ne plus pouvoir se reproduire ensemble, et donc finir par appartenir
à deux espèces différentes. La modélisation et l’étude mathématique de la spéciation est un su-
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jet important qui a connu des progrès récents, notamment au travers des travaux Couvert et al.
(2024); Bard (2023) qui abordent cette question en développant des modèles multi-échelles, allant
du gène à l’espèce, en passant par la protéine et l’individu.

La question principale qui nous a intéressées est celle du rôle de la reproduction sexuée et
des préférences d’appariement, d’une part dans la spéciation, et d’autre part dans le maintien
de la diversité génétique des populations. Ces sujets font aussi l’objet de travaux récents réalisés
par des généticiens des populations (Marie-Orleach et al. 2024; Shaw et al. 2024). Le point de
départ de notre travail a été l’étude de l’article M’Gonigle et al. (2012) étudiant la spéciation
par sélection sexuelle, c’est-à-dire l’arrêt de flux de gènes entre deux sous-populations, du fait
de préférences d’appariement. Nous nous sommes alors penchées sur deux types de préférences
d’appariement : l’homogamie (le fait pour un individu de préférer se reproduire avec un individu
similaire, ou du même type) et l’hétérogamie (le fait au contraire de préférer se reproduire avec
un individu de phénotype ou génotype différent). Nous avons étudié trois questions :

• Sous quelles conditions l’homogamie peut représenter un avantage sélectif et finir par enva-
hir une population (Coron et al. (2021), en collaboration avec Fabien Laroche, d’INRAE)

• Comment l’homogamie couplée à une structure spatiale peut conduire à de la spéciation
(Coron et al. (2018b))

• Quel niveau de diversité génétique est généré par l’hétérogamie (Coron et al. (2022)), en
collaboration avec Violaine Llaurens, du Museum National d’Histoire Naturelle).

2.2 Modèle

Dans le chapitre précédent j’ai présenté et étudié un modèle de Moran, qui est un modèle dit
"de population", car les paramètres qui caractérisent ce modèle, en l’occurrence essentiellement
la taille N de population, s’interprètent à l’échelle de la population. Dans ce chapitre, nous
considérons des modèles dits "individu-centrés", dont les paramètres définissent le comportement
des individus. Nous utilisons plus spécifiquement des processus de naissance et mort multi-
types avec reproduction sexuée, compétition, et migration. Cette classe de modèles, leurs limites
d’échelle et leurs applications à diverses questions d’écologie ont fait l’objet d’une littérature très
riche, qui a démarré par la thèse de Nicolas Champagnat (Champagnat (2004)), et les articles
Champagnat et Méléard (2007) et Champagnat et al. (2006) qui en sont issus.

Dans l’ensemble de nos articles Coron et al. (2018b, 2021, 2022), nous considérons une popula-
tion d’individus haploïdes (i.e. qui portent une seule version de chaque gène), qui se reproduisent
de façon sexuée mais hermaphrodite (i.e. sans distinction de sexes mâle/femelle), comme c’était
déjà le cas dans le chapitre précédent. Ils sont caractérisés par leur génome et leur position spa-
tiale, c’est-à-dire que ces deux éléments définissent leur comportement, qui consiste, à différents
instants, à se déplacer sur un espace discret, se reproduire, ou mourir. Le génome d’un individu
est transmis, de façon aléatoire et avec d’éventuelles mutations, lors de la reproduction. Cette
population est modélisée par un processus de naissance et mort avec migration dont je détaille
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ci-dessous l’espace d’états et les taux.

Espace d’états et changement d’échelle Chaque individu est caractérisé par un génome g ∈
G et une position (ou un patch) i ∈ I. Les espaces G et I sont finis et seront définis ultérieurement
car différents d’un travail à l’autre. Le type d’un individu est donc un élément de E = G × I et
la population est donc caractérisée à tout instant t par un vecteur Nt = (Nk(t))k∈G×I ∈ NE qui
donne les nombres respectifs d’individus de chaque type dans la population au temps t.

Ce processus sera considéré sous une hypothèse de grande taille de population. Cela signifie
que l’on supposera que le nombre initial d’individus est de l’ordre de K, où K est un paramètre
d’échelle voué à tendre vers l’infini et dont les différents paramètres du modèle dépendront. Le
paramètre K a aussi une interprétation biologique, qui est la capacité de charge, c’est-à-dire
l’ordre de grandeur du nombre d’individus que l’espace considéré peut supporter. Pour noter la
dépendance en K de notre modèle, l’état de la population au temps t pourra être noté NK

t .

Migration On note ρ(g, i, j,n) le taux auquel un individu quelconque de génotype g migre de
la position i ∈ I à la position j ∈ I lorsque l’ensemble de la population est dans l’état n ∈ NE .
La fonction ρ sera supposée Lipschitz en n.

Reproduction et transmission génétique Chaque individu se reproduit à un taux βg qui
dépend de son génotype g, choisit un partenaire uniformément au hasard parmi les individus
qui ont la même position que lui (ou vivent dans le même patch), mais cette rencontre donne
lieu à la naissance (instantanée) d’un individu, avec une probabilité qui dépend du génotype
des deux individus. Cette probabilité peut être symétrique ou non entre les génomes du premier
parent (celui qui choisit de se reproduire) et du second parent (celui qui est choisi). Le génome
de deux parents est transmis à leur enfant selon les lois de Mendel, en supposant que les loci
sont indépendants, si besoin (Section 2.3.1 seulement). Lorsque la population est dans l’état
n = (ng,i)g∈G,i∈I ∈ NE , le taux auquel un individu de génotype g apparaît à la position i est
donc de la forme :

b(g, i,n) =
∑

g1,g2∈G
βg1ng1,i

ng2,i

ni
pg1,g2−>g

où pg1,g2−>g est la probabilité pour qu’un couple d’individus ayant pour génotypes g1, g2 donne
naissance à un individu de génotype g, et ni =

∑
g∈G ng,i. Notons que cette probabilité inclut à la

fois la transmission Mendélienne du génome (symétriques entre les deux génomes parentaux) et
les éventuelles préférences d’appariement ou incompatibilités génétiques (non symétriques entre
les deux génomes parentaux). En particulier cette probabilité n’est a priori pas symétrique en g1
et g2.

Mort Les individus de la population peuvent mourir soit de façon naturelle, soit du fait de la
compétition avec les autres individus présents dans la population. On suppose que le génotype
des individus n’influence pas ce comportement. On note d(g, i,n) = (d+ c

Kni)ng,i le taux auquel
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un individu quelconque ayant pour génotype g et position i meurt, lorsque l’ensemble de la
population est dans l’état n = (ng,i)g∈G,i∈I ∈ NE . Le paramètre d ∈ R+ représente le taux de
mort naturelle d’un individu, tandis que le paramètre c/K ∈ R∗

+ représente le taux de compétition
entre deux individus donnés. Rappelons que le nombre d’individus sera de l’ordre de K. Donc
plus les individus sont nombreux, plus la compétition exercée par un individu donné sur un autre
est faible ; en revanche la compétition totale exercée par l’ensemble des individus sur un individu
donné reste toujours du même ordre.

Notons que les paramètres du modèle ne dépendent jamais de la position de l’individu consi-
déré : on peut voir l’espace comme étant constitué de différents patchs qui sont dits écologi-
quement équivalents. Notre objectif essentiel est d’étudier les comportements qui émergent des
préférences d’appariement contenues dans les paramètres pg1,g2→g, et éventuellement des para-
mètres de migration.

Changement d’échelle et convergence Notons (eg,i, (g, i) ∈ G × I) la base canonique de
RE . La dynamique de la population considérée est représentée par la trajectoire d’un processus
stochastique à valeurs dans NE :

(NK(t), t ≥ 0) = (NK
g,i(t), (g, i) ∈ E , t ≥ 0),

dont les transitions sont données, pour tout n ∈ NE et (g, i) ∈ E , par :

n −→ n+ eg,i au taux b(g, i,n),
−→ n− eg,i au taux d(g, i,n),
−→ n+ eg,j − eg,i au taux ρ(g, i, j,n).

Comme mentionné précédemment nous allons considérer ce processus (qui sera défini plus
spécifiquement dans chaque sous-section 2.3.1, 2.3.2 et 2.3.3) sous une échelle de grande taille
de population. Plus précisément dans la suite nous supposerons que les tailles initiales de popu-
lations (NK

α,i(0), (α, i) ∈ E) sont d’ordre K. Nous allons donc naturellement nous intéresser au
comportement du processus stochastique renormalisé :

ZK =
NK

K
.

Notons (z(z
0)(t), t ≥ 0) = (z

(z0)
α,i (t), (α, i) ∈ E)t≥0 l’unique solution de l’équation aux dérivées

ordinaires

dzg,i(t)

dt
= b(g, i, z(t))−

(
d+ c

∑
g∈G

zg,i(t)
)
zg,i(t) +

∑
i′∈I

(ρ(g, i′, i, z)− ρ(g, i, i′, z)) (2.1)

qui part de z(z
0)(0) = z0 ∈ RE

+. L’unicité provient du fait que le champ de vecteur est localement
Lipschitz et que les solutions n’explosent pas en temps fini (Chicone 2006). Alors le premier
résultat obtenu (analogue au Théorème 1.3 du premier chapitre), découle de Ethier et Kurtz
(1986) (Théorème 2.1 p. 456) :
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Lemme 2.1. Soit T ∈ R∗
+. Supposons que la suite (ZK(0),K ≥ 1) converge en probabilité lorsque

K tend vers l’infini vers un vecteur déterministe z0 ∈ (R+)
E . Alors

lim
K→∞

sup
s≤T

∥ZK(s)− z(z
0)(s)∥ = 0 en probabilité, (2.2)

où ∥.∥ est la norme L∞ sur RE .

Ce résultat permet, lorsque K est grand, de déterminer le comportement du processus sto-
chastique NK à partir de celui du système dynamique (2.1), qui est plus facile à étudier et fait
dans les articles Coron et al. (2018b) et Coron et al. (2021) l’objet d’une partie importante de
notre travail.

2.3 Résultats

2.3.1 Émergence de l’homogamie

Motivation Notre premier but a été d’étudier les conditions d’émergence de l’homogamie. Ce
travail, en collaboration avec Fabien Laroche (INRAE), est détaillé dans Coron et al. (2021).
L’homogamie est le fait, pour un individu, de préférer se reproduire avec des individus qui
lui ressemblent. Elle peut aussi prendre la forme d’une meilleure compatibilité génétique entre
individus ayant des génomes proches, ou une meilleure fertilité de ces couples. Ces différentes
formulations peuvent néanmoins se traduire par des modèles mathématiques différents donc il est
important d’être vigilant sur les mots employés. Dans tous les cas on remarque que l’homogamie
représente un avantage lorsqu’un individu est entouré d’individus comme lui, mais un coût lorsque
son génotype (ou son phénotype) est peu représenté dans la population. L’homogamie est très
répandue dans le monde vivant (McLain et Boromisa (1987); Herrero (2003); Savolainen et al.
(2006)) et semble être un moteur majeur de spéciation (Gregorius (1992)).

Modèle Notre approche a consisté à définir un modèle d’homogamie le plus simple possible et à
étudier les conditions nécessaires à l’installation à long terme de cette préférence d’appariement.
Dans cette section il n’y a pas de structuration de l’espace : tous les individus vivent dans le
même patch. On suppose que le comportement des individus est caractérisé par leur génome
à deux loci bi-alléliques indépendants (i.e. qui sont situés sur deux chromosomes différents, ou
suffisamment loin l’un de l’autre sur le génome, pour que leur transmission lors de la méiose se
fasse de façon indépendante) : un locus qui code pour un phénotype et qui présente deux allèles :
a et A, et un locus qui code pour une préférence d’appariement, portant sur ce premier locus, et
qui présente aussi deux allèles : p et P . L’espace des génomes est ainsi G = {AP,Ap, aP, ap}. Un
individu qui porte l’allèle p est supposé ne pas avoir de préférence d’appariement, alors qu’un
individu qui porte l’allèle P préfère se reproduire avec un individu qui porte le même allèle que
lui (a ou A) au premier locus. Plus spécifiquement, on supposera que chaque couple d’individus
se reproduit au même taux mais que la rencontre entre deux individus produit effectivement un
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Parent 1 Parent 2 Taux de reproduction par couple

p −−− b0/n

AP A b+/n

aP a b−/n

Table 2.1 – Taux de reproduction par couple en fonction du génotype de chaque parent, lorsque
la taille de population est égale à n. L’homogamie exercée par le parent 1 porteur de l’allèle P

se traduit mathématiquement par le fait que b− < b0 < b+.

descendant avec une probabilité qui dépend de l’identité du premier et du second parent (qui
n’exerce pas de préférence). Cela peut se traduire par le tableau de taux de reproduction 2.1,
dans lequel on pourra noter le caractère dissymétrique des deux parents.

L’homogamie exercée par l’allèle P lorsqu’il est porté par le parent 1 se traduit mathémati-
quement par le fait que b− < b0 < b+. On pose pour simplifier la suite : b0 = b, b+ = b(1 + β1)

et b− = b(1− β2), où l’on suppose que b > 0, β1 ≥ 0 et 0 ≤ β2 ≤ 1. Enfin les génomes des deux
parents sont transmis de façon Mendélienne, et en supposant que les deux loci considérés sont
indépendants. Plus mathématiquement, cela veut dire qu’indépendamment pour chaque locus,
l’allèle d’un des deux parents est choisi uniformément et est transmis à l’unique descendant pro-
duit. L’ensemble de ces hypothèses implique que le taux auquel un individu de génotype i ∈ G
apparaît dans la population qui est dans l’état n = (nAP , nAp, naP , nap) ∈ N4 est donné par

bAP (n) = b

[
nAP +

1

n

(
β1nAP

(
nAP +

nAp

2

)
− β2

(
nAP

(
naP +

nap

4

)
+ nAp

naP

4

))
+

∆aP

2n

]
bAp(n) = b

[
nAp +

1

n

(
β1nAp

nAP

2
− β2

(
nAp

naP

4
+ nAP

nap

4

))
− ∆aP

2n

]
(2.3)

baP (n) = b

[
naP +

1

n

(
β1naP

(
naP +

nap

2

)
− β2

(
naP

(
nAP +

nAp

4

)
+ nap

nAP

4

))
− ∆aP

2n

]
bap(n) = b

[
nap +

1

n

(
β1nap

naP

2
− β2

(
nap

nAP

4
+ naP

nAp

4

))
+

∆aP

2n

]
,

où

∆aP := naPnAp − nAPnap.

On suppose qu’avant le temps 0 la population n’était constituée que d’individus ayant pour
allèle p au second locus, et donc se reproduisant uniformément, au taux b. Dans ce cas la taille de
population est proche de son équilibre (b− d)K/c, où b > d nécessairement (sinon la population
résidente n’est pas viable). Au temps 0 apparaît un mutant, de génotype αP , avec α ∈ {A, a}.
On notera ᾱ le complémentaire de α dans {A, a} et on s’intéresse à l’émergence de l’allèle P

dans ce contexte.
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La dynamique de cette population est modélisée par un processus de naissance et mort multi-
type avec compétition et reproduction sexuée, noté

(NK(t), t ≥ 0) := (NK
AP (t), N

K
Ap(t), N

K
aP (t), N

K
ap(t), t ≥ 0)

et qui prend ses valeurs dans N4. Comme mentionné précédemment, nous considérons plutôt le
processus changé d’échelle :

(ZK(t), t ≥ 0) :=

(
NK

AP (t)

K
,
NK

Ap(t)

K
,
NK

aP (t)

K
,
NK

ap(t)

K
, t ≥ 0

)
,

de façon à nous placer sous une hypothèse de grande taille de population. Nous supposerons pour
finir que ZK

Ap(0)/(Z
K
Ap(0) + ZK

ap(0)) → ρA en probabilité, ou encore que

(
ZK
Ap(0), Z

K
ap(0)

)
→

K→∞

(
ρA

b− d

c
, (1− ρA)

b− d

c

)
en probabilité, comme mentionné précédemment.

Résultats Nous nous intéressons à l’invasion progressive de l’allèle homogame P qui vient
d’apparaître, accompagnée de la disparition progressive de l’allèle p. Nos résultats portent sur
trois éléments.

(i) Nous donnons une condition nécessaire et suffisante sur les paramètres de la dynamique de
population et la composition initiale de la population pour que l’allèle P ait une probabilité
strictement positive d’envahir la population (Proposition 2.2).

(ii) Nous caractérisons la probabilité d’invasion de l’allèle P , donnons une approximation de
la durée de cette invasion et l’état final auquel elle conduit la population (Théorème 2.3).

(iii) Dans un cas particulier nous donnons la probabilité d’invasion du mutant homogame (Pro-
position 2.4).

Proposition 2.2 (CNS pour invasion avec probabilité > 0). L’allèle P envahit la population
avec probabilité strictement positive si et seulement si :

β1 > β2 ou ρA(1− ρA) <
β1(β2 + 2)

2(β1 + β2)(β1 + 2)
. (2.4)

La Condition (2.4) donne deux conditions suffisantes (l’une d’entre elle au moins devant
être réalisée) pour que la probabilité d’invasion du mutant soit strictement positive. La première
impose que l’avantage conféré à la reproduction homogame soit plus important que le désavantage
conféré à la reproduction hétérogame. La deuxième condition est qu’il y ait suffisamment peu de
diversité allélique au premier locus, qui porte les allèles A et a. En particulier, même si l’avantage
lié à l’homogamie est faible, si la proportion ρA est proche de 0 ou de 1 alors le mutant aura une
probabilité strictement positive d’envahir la population.
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La Condition (2.4) de la Proposition 2.2 découle du fait que le couple formé par les nombres
NAP (t) et NaP (t) est, au début de sa dynamique, approximé par un processus de branchement
dont la matrice moyenne est

J :=

(
β̄AA − b β̄Aa

β̄aA β̄aa − b

)
(2.5)

où
β̄αα :=

b

2

(
1 + (β1 + 1)ρα − β2

2
ρᾱ

)
, β̄αᾱ :=

b

2

(
1− β2

2

)
ρᾱ. (2.6)

Ce processus de branchement a une probabilité strictement positive de ne pas toucher 0 si et
seulement si la matrice J a une valeur propre strictement positive, ce qui amène à la condition
(2.4). Notons maintenant λ la valeur propre maximale de la matrice J qui est strictement positive
sous la condition (2.4). Le résultat suivant donne, sous cette condition, la durée d’invasion de
l’allèle P et l’état final de la population après cette invasion. Notons TP

0 le temps d’extinction
de l’allèle P et TSµ le temps d’atteinte de [ b(1+β1)−d

c − µ, b(1+β1)−d
c + µ]× {0} × {0} × {0} par la

population.

Théorème 2.3. Supposons que λ > 0, que ρA ∈ (1/2, 1), et que pour un α ∈ {A, a}(
NK

αP (0), N
K
ᾱP (0)

)
= (1, 0).

Alors il existe qα ∈ [0, 1) solution d’une équation explicite, et une variable aléatoire B qui suit
une loi de Bernoulli de paramètre 1− qα telle que pour tout 0 < µ < (b(1 + β1)− d)/c :

lim
K→∞

(
TSµ ∧ TP

0

lnK
,1{TSµ<TP

0 }

)
= B ×

(
1

λ
+

2

bβ1
, 1

)
, (2.7)

où la convergence a lieu en probabilité.
De plus,

1{TP
0 <TSµ}

∣∣∣∣∣∣∣∣NK(TP
0 )

K
− (0, ρA, 0, 1− ρA)

b− d

c

∣∣∣∣∣∣∣∣
1

−→
K→∞

0 en probabilité, (2.8)

où ∥ · ∥1 est la norme L1.

La preuve de ce théorème consiste à découper la dynamique du processus stochastique
(ZK(t), t ≥ 0) durant l’invasion de l’allèle P en 3 phases : une phase mentionnée précédemment
durant laquelle le processus (NAP (t), NaP (t))t≥0 est approximé par un processus de branchement
et le reste de la population est contrôlé, une phase durant laquelle le processus (ZK(t), t ≥ 0)

est approximé par un système dynamique, et une phase d’extinction de l’allèle résident p et
du génotype aP . Plus de détails sont donnés dans la Section 2.4. La variable aléatoire B de
ce théorème est l’indicatrice de la survie d’un processus de branchement couplé au processus
(NAP (t), NaP (t))t≥0 qui donne la dynamique de la population mutante. Dans le cas où la condi-
tion (2.4) n’est pas vérifiée, la probabilité d’extinction qα du mutant vaut 1, et la convergence
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énoncée dans l’Équation (2.7) a lieu presque sûrement (vers (0, 0)). Nous n’avons pas pu, en
général, donner une formule explicite pour la probabilité d’extinction qα de la population homo-
game, qui est définie comme solution d’une équation (plus de détails sont donnés dans la Section
2.4 qui rassemble des éléments de preuves pour ce chapitre, cf l’Équation (2.26) pour ce point
précis). Cependant dans le cas particulier où il n’y a que des individus A ou a dans la population
avant l’arrivée de l’allèle P , nous pouvons donner sa valeur.

Proposition 2.4. Supposons que ρA = 1, c’est-à-dire qu’il n’y a que des individus Ap avant
l’arrivée de l’allèle P dans la population. Dans ce cas

qA =
2

2 + β1

et

qa =
1

2− β2

6− β1β2 + 4β1 − β2
2 + β1

−

√(
6− β1β2 + 4β1 − β2

2 + β1

)2

− 4(2− β2)

 .

Ce résultat est complété par des simulations numériques (Figure 2.1) qui montrent dans le
cas général où ρA est quelconque, une dépendance complexe des probabilités d’extinction (qA, qa)

en les paramètres ρA, β1 et β2, et en particulier une non différentiabilité de qA en fonction de
la proportion initiale d’allèle A, ρA, pour certaines valeurs de β1 et β2 (autour de la criticalité,
c’est-à-dire lorsque q1 passe de 1 à une valeur strictement plus petite).
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Figure 2.1 – Valeurs de qA en fonction de ρA pour différentes valeurs de β1 et β2. À gauche,
β2 est fixé à 0.7 et β1 varie. À droite, β1 est fixé à 0.2 et β2 varie. Dans les deux cas b = 1. La
symétrie de notre modèle implique que qa(ρA) = qA(1− ρA).

2.3.2 Homogamie, recherche de partenaire, et spéciation

Motivation et modèle Notre deuxième objectif a été d’étudier comment l’homogamie, cou-
plée à une structuration spatiale, peut générer l’arrêt des flux de gènes, ou des reproductions,
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entre deux sous-populations. Pour ce travail, détaillé dans l’article Coron et al. (2018b), nous
supposons maintenant que les individus sont tous homogames, que l’espace des génomes est
constitué de deux allèles possibles, correspondant à deux versions d’un gène, situé à un locus
donné du génome : G = {A, a}, et que l’espace est constitué de deux patchs (écologiquement
équivalents, comme mentionné dans la Section 2.2) : i ∈ I = {1, 2}. On suppose alors que
(i) Les individus se rencontrent pour se reproduire, de façon uniforme au sein de chaque patch,

mais la probabilité pour qu’une rencontre entre deux individus donne lieu à un descendant
est plus élevée lorsqu’ils ont le même génotype. Ainsi le taux auquel un individu de génotype
α naît dans le patch i vaut

λα,i(n) =b

(
nα,iβ

nα,i

nα,i + nᾱ,i
+

1

2
nα,i

nᾱ,i

nα,i + nᾱ,i
+

1

2
nᾱ,i

nα,i

nα,i + nᾱ,i

)
= bnα,i

βnα,i + nᾱ,i

nα,i + nᾱ,i
.

(2.9)

Le paramètre β > 1 représente la compatibilité génétique d’un couple d’individus homo-
game, dans le sens où les individus se rencontrent uniformément au hasard et deux individus
qui se rencontrent ont une probabilité β fois plus élevée de produire un descendant s’ils ont
le même génome.

(ii) Les individus migrent d’un patch à l’autre à un taux proportionnel à la proportion d’indi-
vidus qui ne sont pas du même génotype qu’eux, dans leur patch (cf Figure 2.2) :

ρα,i→ī(n) = pnα,i

(
1− nα,i

nα,i + nᾱ,i

)
= p

nα,inᾱ,i

nα,i + nᾱ,i
. (2.10)

Les exemples d’espèces d’animaux qui migrent pour trouver des partenaires sexuels sont
bien documentés (Schwagmeyer 1988; Höner et al. 2007). Par ailleurs un mécanisme simi-
laire de migration a été étudié dans Payne et Krakauer (1997) pour un espace continu.
Enfin nous avons considéré dans l’article Coron et al. (2018b) des classes plus générales de
modèle, avec plus de deux patchs et des formes plus générales de migration.

Résultats Notre premier résultat est le Lemme 2.1, énoncé en préambule de ce chapitre. Il
nous dit que lorsque la capacité de charge K tend vers l’infini, le processus stochastique

(ZK(t), t ≥ 0) = (ZK
α,i(t), (α, i) ∈ E , t ≥ 0) =

(
NK(t)

K
, t ≥ 0

)
,

est proche de l’unique solution (z(t), t ≥ 0) du système dynamique suivant, qui part de la
condition initiale z(0) := limK→∞(NK

α,i(0)/K)(α,i)∈E ∈ RE
+ :

d
dtzA,1(t) = zA,1

[
b
βzA,1+za,1
zA,1+za,1

− d− c(zA,1 + za,1)− p
za,1

zA,1+za,1

]
+ p

zA,2za,2
zA,2+za,2

d
dtza,1(t) = za,1

[
b
βza,1+zA,1

zA,1+za,1
− d− c(zA,1 + za,1)− p

zA,1

zA,1+za,1

]
+ p

zA,2za,2
zA,2+za,2

d
dtzA,2(t) = zA,2

[
b
βzA,2+za,2
zA,2+za,2

− d− c(zA,2 + za,2)− p
za,2

zA,2+za,2

]
+ p

zA,1za,1
zA,1+za,1

d
dtza,2(t) = za,2

[
b
βza,2+zA,2

zA,2+za,2
− d− c(zA,2 + za,2)− p

zA,2

zA,2+za,2

]
+ p

zA,1za,1
zA,1+za,1

.

(2.11)
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Figure 2.2 – Taux auquel une migration entre deux patchs a lieu.

Notre deuxième résultat consiste à étudier les équilibres du système dynamique (2.11). Rappelons
que β > 1, b > d, et notons

ζ :=
βb− d

c
. (2.12)

Théorème 2.5. Les points d’équilibre dans RE
+ du système dynamique (2.11) sont les suivants :

1. Les points pour lesquels la population ne contient plus qu’un seul type dans un seul patch

(ζ, 0, 0, 0) (0, ζ, 0, 0) (0, 0, ζ, 0) (0, 0, 0, ζ) (2.13)

2. Les points pour lesquels chaque type est présent dans exactement un patch :

(ζ, 0, 0, ζ), (0, ζ, ζ, 0) (2.14)

3. Les points pour lesquels seulement un type reste présent, dans les deux patchs :

(ζ, 0, ζ, 0), (0, ζ, 0, ζ) (2.15)

4. Les points pour lesquels les deux types restent présents dans les deux patchs :(
b(β + 1)− 2d

4c
,
b(β + 1)− 2d

4c
,
b(β + 1)− 2d

4c
,
b(β + 1)− 2d

4c

)
(2.16)

(ζ +√
∆

2
,
ζ −

√
∆

2
, ζ̃, ζ̃

)
,
(ζ −√

∆

2
,
ζ +

√
∆

2
, ζ̃, ζ̃

)
, (2.17)(

ζ̃, ζ̃,
ζ +

√
∆

2
,
ζ −

√
∆

2

)
,
(
ζ̃, ζ̃,

ζ −
√
∆

2
,
ζ +

√
∆

2

)
. (2.18)
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Les seuls équilibres stables parmi cette liste sont ceux définis dans les Équations (2.14) et (2.15).

Notre troisième résultat porte alors sur la convergence des solutions du système dynamique
(2.11) vers l’équilibre qui nous intéresse (ζ, 0, 0, ζ), pour lequel chaque type finit dans un seul
patch (les équilibres (0, ζ, ζ, 0), (ζ, 0, ζ, 0) et (0, ζ, 0, ζ) pouvant être traités de façon symétrique).
Pour cela nous introduisons le domaine

D := {z ∈ RE
+, zA,1 − za,1 > 0, za,2 − zA,2 > 0},

et le nombre réel positif

p0 =

√
b(β − 1)[b(3β + 1)− 4d]− b(β − 1)

2
. (2.19)

Nous savons que p0 < b(β + 1) − 2d sous les hypothèses appropriées. Enfin, pour tout p ∈
[0, b(β + 1)− 2d], nous introduisons le domaine

Kp :=

{
z ∈ D, {zA,1 + za,1, zA,2 + za,2} ∈

[
b(β + 1)− 2d− p

2c
,
2bβ − 2d+ p

2c

]}
.

Théorème 2.6. Soit p < p0. On a

(i) Toute solution (z(t), t ≥ 0) du système dynamique(2.11) qui démarre dans D converge vers
l’équilibre (ζ, 0, 0, ζ).

(ii) Si la condition initiale z(0) de la solution (z(t), t ≥ 0) du système dynamique (2.11) est
dans Kp, alors il existe deux constantes positives k1 et k2, dépendantes de la conditions
initiales, telles que pour tout t ≥ 0,

∥z(t)− (ζ, 0, 0, ζ)∥ ≤ k1e
−k2t.

Enfin notre quatrième résultat porte sur le processus stochastique ZK(t), t ≥ 0) : son com-
portement en temps long et le temps au bout duquel chaque type reste présent dans un patch
uniquement.

Théorème 2.7. Supposons que ZK(0) converge en probabilité vers un vecteur déterministe z0

appartenant à D, avec (z0a,1, z
0
A,2) ̸= (0, 0). Soit

Bε := [(ζ − ε)K, (ζ + ε)K]× {0} × {0} × [(ζ − ε)K, (ζ + ε)K].

Il existe trois constantes positives ε0, C0 et m, et une constante positive V dependant de (m, ε0)

telles que si p < p0 et ε ≤ ε0, alors

lim
K→∞

P

(∣∣∣∣∣ TK
Bε

logK
− 1

b(β − 1)

∣∣∣∣∣ ≤ C0ε, N
K
(
TK
Bε

+ t
)
∈ Bmε ∀t ≤ eV K

)
= 1, (2.20)

où TK
B , B ⊂ RE

+ est le temps d’atteinte de l’ensemble B par le processus NK .
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Ce théorème donne l’ordre de grandeur du temps nécessaire pour atteindre l’isolement repro-
ductif entre les deux patchs, en fonction du paramètre d’échelle de la taille de la population, K.
Notons que le temps nécessaire pour atteindre l’isolement reproductif ne dépend pas du para-
mètre p. Cela s’explique par le fait que le temps nécessaire pour atteindre un voisinage de l’état
(ζ, 0, 0, ζ) est de l’ordre de 1, et qu’à partir de ce voisinage, le temps nécessaire pour l’extinction
complète des individus a dans le patch 1 et des individus A dans le patch 2 est beaucoup plus
long (de l’ordre de C logK). Au cours de cette seconde phase, les migrations entre les deux patchs
sont déjà équilibrées, ce qui entraîne l’indépendance par rapport à p. De plus, la constante C

ne dépend pas de d et c puisqu’il n’y a pas de différence écologique entre les deux types et les
deux patchs : durant la seconde phase, le taux de natalité des individus a dans le patch 1 est
proche de b puisque le patch 1 est presque entièrement occupé par des individus de génotype
A, et leur taux de mortalité naturelle peut être approximé par d + cζ = bβ où le terme cζ pro-
vient de la compétition exercée par les individus A. Ainsi, leur taux de croissance naturelle est
approximativement b− bβ qui dépend bien uniquement des paramètres de naissance.

Le Théorème 2.7 donne non seulement une estimation du temps auquel la population atteint
un voisinage de la limite du système dynamique donnée dans l’Équation (2.14), mais indique
aussi qu’après ce temps la population reste dans ce voisinage pendant longtemps. Le Théorème
4 de Coron et al. (2018b) généralise le Théorème 2.7 au cas où il y a plus de 2 patchs. Enfin,
l’hypothèse (z0a,1, z

0
A,2) ̸= (0, 0) est nécessaire pour obtenir la borne inférieure dans (2.20). En

effet, si (z0a,1, z0A,2) = (0, 0), l’ensemble Bε est atteint plus rapidement, et donc seule la borne
supérieure reste valable. Dans ce cas, la vitesse d’atteinte de l’ensemble Bε dépendra de la vitesse
de convergence de la suite (ZK

a,1, Z
K
A,2) vers (0, 0). Dans l’exemple trivial où (ZK

a,1, Z
K
A,2) = (0, 0),

TK
B sera d’ordre 1, ce qui correspond au temps nécessaire aux processus ZK

A,1 et ZK
a,2 pour atteindre

chacun un voisinage de l’équilibre ζ.
Notons que la limite atteinte dépend du génotype initialement majoritaire dans chaque patch,

puisque le sous-ensemble D est invariant sous le système dynamique (2.11). Par ailleurs, lorsque
p = 0, les résultats du Théorème 2.6 peuvent être prouvés facilement puisque les deux patchs
sont indépendants l’un de l’autre. La difficulté est donc de prouver le résultat lorsque p >

0. Notre argumentation nous permet de déduire une constante explicite p0 sous laquelle on a
une convergence vers un équilibre avec isolement reproductif entre patchs. Cependant, nous ne
sommes pas en mesure de déduire un résultat rigoureux pour tout p. En effet, lorsque p augmente,
il y a plus de mélanges entre les deux patchs ce qui rend le modèle difficile à étudier. Néanmoins,
les simulations présentées dans la Figure 2.3 suggèrent que le résultat reste vrai.

Dans cette figure, nous traçons le temps Tε(p) auquel la solution du système dynamique (2.11)
atteint l’ensemble

Sε =
{
(zA,1, za,1, zA,2, za,2) ∈ R4

+, (zA,1 − ζ)2 + z2a,1 + z2A,2 + (za,2 − ζ)2 ≤ ε2
}
,

c’est-à-dire le premier temps auquel cette solution atteint un ε−voisinage de (ζ, 0, 0, ζ), pour
différentes conditions initiales et en fonction du taux de migration p. Les paramètres démogra-
phiques sont β = 2, b = 2, d = 1 et c = 0.1, et nous prenons ε = 0.01. Pour ces paramètres,
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Figure 2.3 – Pour différentes conditions initiales nous traçons p 7→ Tε(p) − Tε(0). La condi-
tion initiale est (zA,1(0), zA,1(0) − 0.1, zA,2(0), za,2(0)) où zA,1(0) ∈ {0.3, 0.5, 1, 2, 3, 5, 10, 15}
comme représenté par les couleurs de la légende, et (zA,2(0), za,2(0)) = (1, 30) sur la gauche,
et (zA,2(0), za,2(0)) = (15, 16) sur la droite.

ζ = 30 et p0 =
√
5 − 1 ≃ 1.24. Nous remarquons que l’impact du taux de migration sur le

comportement du temps nécessaire à la population pour atteindre un voisinage de son équilibre
correspondant à un isolement reproducteur est fortement dépendant de la condition initiale.

2.3.3 Hétérogamie et diversité génétique

Motivation et modèle La troisième question qui nous a intéressées est celle de la diver-
sité génétique générée par les préférences d’appariement et en particulier par l’hétérogamie. Ce
travail, en collaboration avec Violaine Llaurens (CNRS), est détaillé dans Coron et al. (2022).
Des résultats classiques de génétique des populations montrent que la surdominance, c’est-à-dire
l’avantage sélectif des individus hétérozygotes sur les individus homozygotes, favorise la diversité
génétique (Lewontin et al. 1978). Cette surdominance peut être le résultat de préférences d’appa-
riement, lorsque les individus préfèrent se reproduire avec des individus éloignés génétiquement
(Maisonneuve et al. 2021). C’est le phénomène que nous étudions ici.

Pour cela, comme dans la Section 2.3.2, nous considérons une population d’individus haploïdes
caractérisés par leur génome à un seul locus. Plus précisément nous supposons qu’il y a k allèles
possibles au locus considéré, notés 1, 2, ..., k. Ces individus se reproduisent de façon sexuée :
chaque individu de type i se reproduit au taux βi, choisit un partenaire uniformément dans la
population (qui n’est plus spatialisée, comme dans la Section 2.3.1), et cette rencontre donne lieu
à un nouvel individu avec une probabilité pij si le deuxième parent a le génome (ou le type) j.
Nous supposons pour finir une transmission Mendélienne de ces allèles, comme dans les sections
précédentes (i.e. l’enfant d’un couple de parents de génotypes respectifs i et j aura pour génotype
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i ou j avec probabilité 1/2 pour chacun). On sait alors, sous une hypothèse de grande taille de
population (Lemme 2.1 encore), que le processus de naissance et mort considéré et proprement
renormalisé converge vers l’unique solution (z1(t), z2(t), ..., zk(t))t≥0 du système dynamique

żi(t) = zi(t)

 k∑
j=1

βipij + βjpji
2

zj(t)

z(t)
− d− cz(t)

 , i ∈ {1, ..., k}, t ≥ 0 (2.21)

partant de (z1(0), ..., zk(0)) ∈ Rk
+, où pour tout t > 0, z(t) =

∑k
i=1 zi(t) est la masse totale de

population au temps t.
Nous notons

b := inf
1≤i,j≤k

βipij + βjpji
2

et supposons que b ≥ d > 0. Pour (i, j) ∈ {1, ..., k}2, on introduit aussi

sij :=
βipij + βjpji

2b
− 1,

et l’Équation (2.21) se réécrit alors

żi(t) = zi(t)

b
k∑

j=1

(1 + sij)
zj(t)

z(t)
− d− cz(t)

 . (2.22)

Pour tout i, j ∈ {1, .., k}, le paramètre sij peut être interprété comme l’avantage sélectif d’une
paire de parents ayant pour génotypes i et j. On note M = (sij)1≤i,j≤k la matrice de l’ensemble
des avantages sélectifs.

Résultat général Notre premier résultat donne une condition sur les avantages sélectifs sij
sous laquelle la diversité génétique sera maintenue, ainsi que l’état limite de la population consi-
dérée, sous cette condition.

Théorème 2.8. Supposons que det(M) ̸= 0 et que

M−11 > 0, où 1 =

 1

...

1

 . (2.23)

Le système dynamique (2.22) admet un unique équilibre strictement positif

Z∗ :=
1

c

(
b+

b

1TM−11
− d

)
M−11

1TM−11
, (2.24)

où 1T est le vecteur 1 transposé.
Qui plus est, en partant de n’importe quelle distribution allélique strictement positive, la popula-
tion se stabilisera autour de cet équilibre si et seulement si la matrice M a exactement 1 valeur
propre strictement positive et k − 1 valeurs propres strictement négatives.
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La Condition (2.23) est facile à vérifier numériquement, la matrice M étant donnée. Le
Théorème 2.8 permet en outre l’exploration de la diversité génétique (typiquement le nombre
d’allèles maintenus en temps long) permise par différents structures de préférences d’appariement
et notamment d’hétérogamie. C’est l’objet de la fin de cette section.

Application à quelques cas particuliers Nous commençons par l’application du Théorème
2.8 à quelques cas particuliers, permettant de retrouver ou de démontrer plusieurs résultats déjà
connus ou conjecturés par la littérature de génétique des populations. Nous prouvons en effet que
dans le cas où la population est constituée de deux allèles, alors la population admet un équilibre
strictement positif si et seulement si s12 > s11 et s21 > s22, c’est-à-dire si tous les individus sont
hétérogames. Ce résultat était connu (Kimura et Ohta (2020)). Dans le cas où la population est
constituée de trois allèles nous montrons que ces trois allèles se maintiennent en temps long si et
seulement si

s12 < s13 + s23 , s13 < s12 + s23 , s23 < s12 + s13. (2.25)

Dans l’article Lewontin et al. (1978) les auteurs ont prouvé que dans une population constituée
de k allèles une condition circulaire du même type est nécessaire au maintien de la diversité
génétique. Dans le cas k = 3 nous montrons donc que cette condition est aussi suffisante. Enfin
le Théorème 2.8 permet de montrer que dans le cas le plus simple d’hétérogamie, tel que sij =

ρ+ ϵ1i̸=j alors la diversité génétique se maintient en temps long quel que soit le nombre d’allèles
initialement présents.

Construction de la diversité génétique Dans cette section nous appliquons le Théorème
2.8 à l’étude de la construction progressive de la diversité génétique, par apparition successive de
mutations. Nous supposons donc que de nouveaux allèles peuvent apparaître dans une population
dans laquelle un ou plusieurs allèles coexistent déjà. Nous qualifions donc le nouvel allèle apparu
de mutant et les allèles préexistants d’allèles résidents. Nous considérons que les mutations sont
suffisamment rares pour que la dynamique de la population résidente atteigne son équilibre
entre deux apparitions de mutations. Nous cherchons alors à étudier le devenir des mutations
successives et non simultanées dans la population. Ce cadre classique est proche du cadre de la
dynamique adaptative introduit dans Metz et al. (1996), car nous considérons des événements
de mutation rares. Cependant, nous ne supposons pas que les mutations ont nécessairement de
faibles effets. Nous caractérisons les conditions sur les paramètres d’avantage sélectif de l’allèle
mutant (lorsqu’il s’accouple aux différents allèles résidents), qui permettent son invasion, c’est-
à-dire sa persistance à long terme dans la population.

Théorème 2.9. Considérons une population résidente stable qui contient k types et caractérisée
par une matrice de préférences M , c’est-à-dire (d’après le Théorème 2.8) telle que M satisfait
M−11 > 0 et la deuxième valeur propre de M est négative.
Considérons un type mutant qui arrive dans la population résidente, caractérisé par les avantages
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sélectifs S = (sk+1,i)i=1,..,k et σ = sk+1,k+1. Notons la nouvelle matrice de préférences

M̄ =

(
M S

ST σ

)
.

Si M̄−11 > 0, c’est-à-dire si l’équilibre à k + 1 types existe, alors il est globalement asymptoti-
quement stable.

Ce résultat donne le comportement asymptotique de la population lorsqu’un équilibre à k+1

allèles existe. Lorsque cet équilibre n’existe pas l’apparition du dernier allèle peut donner lieu à
des comportements divers, notamment la disparition d’un ou plusieurs allèles pré-existants. Ce
phénomène est illustré dans la Figure 2.4 dans un cas très simple où il y a 3 allèles résidents et
où la matrice M avant et après apparition du quatrième allèle vaut respectivement

 0 s s

s 0 s

s s 0

 et


0 s s x

s 0 s y

s s 0 z

x y z 0

 .

La figure 2.4 montre qu’après l’apparition du quatrième allèle, lorsque l’équilibre à 4 allèles
n’existe pas, l’état final de la population peut contenir 2 ou 3 allèles.

Figure 2.4 – Nombre d’allèles dans la population à l’équilibre, après l’introduction d’un nouvel
allèle dans une population d’hétérogamie initialement homogène (paramètre s) en fonction des
paramètres de préférences d’appariement entre l’allèle mutant et chacun des allèles résidents.
Dans la zone blanche le mutant n’envahit pas, dans la zone rouge les quatre allèles se main-
tiennent, dans la zone jaune seulement 3 allèles se maintiennent, et dans la zone bleue seulement
2 allèles se maintiennent. Les paramètres sont b = 1, d = 0, c = 1, s = 1.
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Application à un modèle de génétique quantitative Notre dernier résultat porte sur
l’étude d’un modèle de génétique quantitative. Dans cette section l’espace des génomes est G =

{0, 1}L et on définit la distance entre deux génomes g = (g1, g2, ..., gL) et g′ = (g′1, g
′
2, ..., g

′
L) ∈ G

par

d(g, g′) =
L∑
i=1

1gi ̸=g′i
.

Cette hypothèse de structure du génome en L sites polymorphes est appropriée par exemple
pour modéliser le complexe majeur d’histocompatibilité (MHC ) chez les vertébrés (Stefan et al.
2019). On suppose alors, pour rester dans le cadre d’étude de l’hétérogamie, que plus deux
individus ont des génomes distants plus le succès reproductif du couple qu’ils forment est élevé.
Plus précisément nous supposons que sxy = d(x, y)α et nous étudions l’impact de α et de la
taille L du génome sur la diversité génétique soutenue par la population. Nous obtenons que le
paramètre α joue un rôle très important dans la quantité de diversité génétique que la population
peut contenir. Pour commencer, nous montrons que quel que soit le nombre de sites L, l’équilibre
avec tous les génomes de G existe, mais il semble instable lorsque α ≥ 1 (Figure 2.5).

Figure 2.5 – Stabilité de la population dans laquelle tous les allèles possibles sont
présents, explorée en utilisant la deuxième valeur propre de la matrice de sélection M , pour
différents nombres de sites L au locus considéré, et en fonction du paramètre α de la fonction f

qui code la relation entre la distance génétique et la préférence d’appariement. Notons que dès
que α ≥ 1 , cette valeur propre devient positive, ce qui implique que l’équilibre contenant tous
les allèles n’est pas stable, d’après le Théorème 2.8.

Lorsque α < 1, le Théorème 2.8 nous dit que l’équilibre avec tous les génomes est stable.
Néanmoins ce résultat ne nous permet pas de savoir quel sera le résultat d’une introduction
progressive de mutations. Cette question est difficile et nous l’avons étudiée de façon numérique.
La Figure 2.6 donne un résultat de simulation de la dynamique du nombre d’allèles dans la
population au cours du temps et au fur et à mesure des introductions successives d’allèles. Pour
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les paramètres choisis les simulations aboutissent toutes à une diversité génétique maximale,
c’est-à-dire une configuration avec tous les (64) génomes possibles présents dans la population.
Lorsque α ≥ 1, la dynamique de la diversité génétique est très différente. En effet lorsque α ≥ 1,
nous prouvons que les conditions d’invasion énoncées dans le Théorème 2.9 impliquent que la
population à l’équilibre contient d’abord un allèle, puis toujours exactement deux allèles (lors-
qu’un nouvel allèle apparaît dans la population qui en contient déjà deux, soit l’allèle mutant
s’éteint soit il remplace un allèle initialement existant), et la distance génétique entre ces deux
allèles est croissante. La population finit donc par contenir uniquement les deux génotypes les
plus éloignés : (0, ..., 0) et (1, ..., 1).
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Figure 2.6 – Évolution du nombre d’allèles maintenus dans la population, en sup-
posant des mutations ponctuelles et une forme convexe de la fonction reliant la
distance génétique et la fitness d’un couple d’allèles (α ≤ 1). À partir d’une population
initiale comportant deux allèles, nous induisons numériquement des mutations successives et sui-
vons leur succès d’invasion au fil du temps. Le panneau (a) montre la distribution des allèles
dans la population au fil du temps. Chaque couleur correspond à un allèle donné et la hauteur
de la barre correspond au nombre d’individus porteurs de chaque allèle dans la population à un
moment donné. Le panneau (b) indique le nombre d’allèles maintenus à l’équilibre après chaque
mutation jusqu’à ce que le nombre total d’allèles soit atteint. Chaque ligne correspond à une
simulation numérique différente (n = 6). Ici, L = 6 et α = 0, 6 de sorte qu’il y a 26 = 64 allèles
possibles.

2.3.4 Bilan des résultats

Dans cet ensemble de travaux nous avons étudié l’hétérogamie et l’homogamie, en utilisant des
modèles individu-centrés multi-types et avec interaction. Nous avons créé et étudié des modèles
les plus simples possibles, permettant de répondre aux questions qui nous intéressent. Pour cette
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classe de modèles nous avons dans un premier temps donné des conditions explicites sous lesquels
un mutant homogame a une probabilité d’invasion strictement positive, et nous avons caractérisé
la probabilité et la durée de cette invasion. Ensuite nous avons montré comment l’homogamie
couplée à une structuration spatiale et une migration liée à la recherche de partenaire sexuel
peut générer une spéciation, ou l’arrêt d’un flux de gènes entre deux sous-populations. Enfin
nous avons étudié le niveau de diversité génétique permis par l’homogamie et la construction
progressive de cette diversité, par apparitions successives de mutants.

2.4 Éléments de preuves

Preuve du Théorème 2.3

La preuve du Théorème 2.3 consiste à étudier la dynamique de population en la découpant
en trois phases : survie ou extinction de l’allèle mutant P , puis phase de croissance quasiment
déterministe de la population, et enfin extinction de l’allèle résident p.

Survie du mutant Comme mentionné juste après la Proposition 2.2, tant que le nombre
d’allèles P est petit, la dynamique du processus stochastique (NAP (t), NaP (t))t≥0 peut être
approximée par celle d’un processus de branchement multi-type surcritique, dont la matrice
moyenne est donnée par l’Équation (2.5) et dont les probabilités d’extinction sA et sa partant
respectivement d’un mutant de génotype AP ou d’un mutant de génotype aP satisfont donc le
système d’équations {

b(1− sA) + β̄AA(s
2
A − sA) + β̄Aa(sAsa − sA) = 0

b(1− sa) + β̄aa(s
2
a − sa) + β̄aA(sAsa − sa) = 0.

(2.26)

Cette approximation est justifiée en contrôlant la population résidente (NAp(t), Nap(t)) jusqu’au
temps inf(TP

0 , Tεξ) auquel le nombre d’allèles P atteint soit 0 soit εξK où ξ ∈ {1/2, 1}. Nous
montrons plus précisément (Proposition 3.1 de Coron et al. (2021)) qu’il existe une fonction η

continue et nulle en 0 et une constante A0 > 0 telles que pour ξ ∈ {1/2, 1},

lim sup
K→∞

∣∣∣∣∣P
(
Tεξ < T0 ∧RA0ε ∧ Uε1/6 ,

∣∣∣∣ Tεξ

lnK
− 1

λ

∣∣∣∣ ≤ η(ε)

∣∣∣∣∣NP (0) = eα

)
− (1− qα)

∣∣∣∣∣ = oε(1),

et
lim sup
K→∞

∣∣P (T0 < Tεξ ∧RA0ε ∧ Uε1/6

∣∣NP (0) = eα
)
− qα

∣∣ = oε(1), (2.27)

où Rz (resp. Uz) est le temps au bout duquel le nombre de copies de l’allèle p s’éloigne de sa
valeur initiale K b−d

c de plus de z (resp. le temps au bout duquel la proportion d’individus de
génotype Ap parmi les individus portant l’allèle p s’éloigne de sa valeur initiale ρA de plus de z)
et par convention, oε(1) tend vers 0 quand ε tend vers 0. Cette proposition est le résultat difficile
de l’article. Pour la montrer nous utilisons la décomposition en semi-martingale du processus
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(NAp(t), Nap(t), NAP (t), NaP (t))t≥0 et encadrons d’abord la proportion d’individus de génotype
Ap parmi les individus portant l’allèle p (Lemme 3.3) puis la quantité de copies de l’allèle p

(Lemme 3.4). Nous pouvons alors encadrer stochastiquement la population (NAP (t), NaP (t))t≥0

par deux processus de branchement bi-types N (ϵ,−) et N (ϵ,+) tels que presque sûrement pour
tout t ≤ Tεξ ∧T0∧RA0ε∧Uε1/6 , N

(ϵ,−)
α (t) ≤ NαP (t) ≤ N

(ϵ,+)
α (t) dont les probabilités d’extinction

respectives qϵ,−α et qϵ,+α satisfont 0 ≤ qϵ,+α − qϵ,−α → 0 quand ϵ tend vers 0 (Section 3.1.3 de Coron
et al. (2021)).

Phase champ moyen Une fois que le mutant a atteint le niveau εξK, le Lemme 2.1 nous
indique que le processus stochastique (NAp(t), Nap(t), NAP (t), NaP (t))t≥0 est bien approximé par
le système dynamique décrit par l’Équation (2.11) dont les équilibres et les bassins d’attractions
sont déterminés. Le problème est alors d’avoir une information sur la valeur "initiale" du couple
(NAP , NaP ) lorsque NP dépasse εξK. Nous montrons que l’on peut trouver un temps assez court
(inférieur à T√

ε) auquel les proportions NAP (t)
NAP (t)+NaP (t) et NaP (t)

NAP (t)+NaP (t) sont proches de celles
données par le Théorème de Kesten-Stigum (Georgii et Baake (2003)), à savoir le vecteur propre
à gauche de la matrice J (Équation (2.5)) associé à la valeur propre maximale λ.

Extinction du résident La dernière phase de la dynamique consiste à encadrer le temps
d’extinction des individus de génotypes Ap, ap et aP et à contrôler la population d’individus
AP pendant ce temps. Cette étape consiste à borner supérieurement le processus stochastique
(NAp(t), Nap(t), NaP (t))t≥0 par un processus de branchement multi-type sous critique et à utiliser
des résultats classiques concernant ce type de processus stochastiques, que l’on peut trouver par
exemple dans Athreya et Ney (1972).

Preuve des Théorèmes 2.5, 2.6 et 2.7

La preuve du Théorème 2.5 qui détermine les équilibres du système dynamique (2.11) et leur
stabilité consiste à manipuler les équations stationnaires satisfaites par ces équilibres. La preuve
du Théorème 2.6 est découpée en deux parties. Rappelons les définitions suivantes :

D = {z ∈ RE
+, zA,1 − za,1 > 0, za,2 − zA,2 > 0},

et

Kp =

{
z ∈ D, {zA,1 + za,1, zA,2 + za,2} ∈

[
b(β + 1)− 2d− p

2c
,
2bβ − 2d+ p

2c

]}
.

La première partie de la preuve du Théorème 2.6 consiste à prouver que n’importe quelle solution
du Système (2.11) qui part dans D atteint puis reste dans le sous-ensemble Kp (ce sous-ensemble
est stable). C’est l’objet du Lemme 2 dans Coron et al. (2018b). Sa preuve consiste à contrôler
d’abord la taille totale de population puis les tailles respectives de population dans chaque patch.
La seconde partie de la preuve du Théorème 2.6 consiste à exhiber une fonction de Lyapunov pour
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le système dynamique (2.11) sur Kp. Plus précisément nous considérons la fonction V : D → R :

V (z) = ln

(
zA,1 + za,1
zA,1 − za,1

)
+ ln

(
za,2 + zA,2

za,2 − zA,2

)
.

Nous prouvons (Lemme 3 de Coron et al. (2018b)) que la fonction V est une fonction de Lyapunov
sur Kp si p < p0. Ceci donne la convergence de toute solution du système dynamique (2.11)
partant dans D vers l’équilibre approprié (ζ, 0, 0, ζ). Une étude plus fine de la dynamique des
différences zA,1 − za,1 et za,2 − zA,2 donne la convergence exponentiellement rapide une fois que
l’ensemble Kp est atteint.

La preuve du Théorème 2.7 combine les résultats du Théorème 2.6 et une étude du processus
stochastique (ZK(t), t ≥ 0) autour de l’équilibre (ζ, 0, 0, ζ) quand K est grand. Plus précisément,
notons TK

0 = inf{t ≥ 0, ZK
a,1(t)+ZK

A,2(t) = 0} le temps auquel il n’y a plus d’individus de type a

dans le patch 1 et plus d’individus de type A dans le patch 2 (qui est un état absorbant pour le
processus stochastique considéré). Nous obtenons que ce temps est d’ordre log(K)/(b(β−1)). Plus
précisément nous prouvons (Proposition 2 de Coron et al. (2018b)) qu’il existe deux constantes
positives ε0 et C0 telles que pour tout ε ≤ ε0, s’il existe η ∈]0, 1/2[ tel que max(|z0A,1 − ζ|, |z0a,2 −
ζ|) ≤ ε et ηε/2 ≤ z0a,1, z

0
A,2 ≤ ε/2, alors

pour tout C > (b(β − 1))−1 + C0ε, P(TK
0 ≤ C log(K)) →

K→+∞
1,

pour tout 0 ≤ C < (b(β − 1))−1 − C0ε, P(TK
0 ≤ C log(K)) →

K→+∞
0.

La preuve de cette proposition repose sur plusieurs arguments de couplage. La première
étape consiste à prouver que les tailles de population ZK

A,1 et ZK
a,2 restent proches de ζ sur une

longue échelle de temps. La deuxième étape consiste à coupler les processus ZK
a,1 et ZK

A,2 avec des
processus de branchement sous-critiques dont les temps d’extinction sont connus, en s’appuyant
sur des travaux antérieurs (Champagnat (2006), Théorème 3.c, et Freidlin et al. (1984), Chapitre
5).

Preuve des Théorèmes 2.8 et 2.9

La preuve du Théorème 2.8 consiste d’abord à donner, quand il existe, l’unique équilibre
positif donné par l’Équation (2.24). Ensuite nous montrons par étude du Jacobien du système
dynamique donné dans l’Équation (2.22) autour de l’unique équilibre, que cet équilibre est loca-
lement stable si et seulement si la matrice d’avantage sélectif M a une deuxième valeur propre
strictement négative. Enfin nous montrons la stabilité globale de cet équilibre en montrant que
la fonction

V (z) :=
k∑

ℓ=1

(
zℓ
z

−
z∗ℓ
z∗

ln
(zℓ
z

))
= 1−

k∑
ℓ=1

z∗ℓ
z∗

ln
(zℓ
z

)
,

est une fonction de Lyapunov pour le système dynamique (2.22), si z =
∑

l zl, Z
∗ = (z∗1 , ..., z

∗
k)

et z∗ =
∑

l z
∗
l .
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La preuve du Théorème 2.9 repose sur l’étude de la matrice Jacobienne du système dynamique
de dimension k+1 autour du point (Z∗, 0). Pour prouver que l’existence de l’équilibre à k+1 allèles
entraîne sa stabilité globale nous utilisons le complément de Schur et le Théorème d’entrelacement
des valeurs propres.

2.5 Perspectives

Plusieurs de mes perspectives de recherches sont connectées à ce sujet. Tout d’abord, nous
cherchons actuellement, avec Manon Costa, Charline Smadi et Hélène Leman, à comprendre
l’impact des structures familiales sur l’évolution génétique des populations. Nous considérons
par exemple un modèle de Wright-Fisher dans lequel les individus forment des couples, qui se-
ront choisis comme parents des individus de la génération suivante. Dans ce modèle les individus
n’ont donc pas de demi-frères et sœurs, mais uniquement des frères et sœurs. Nous voulons
étudier la composition génétique de la population dans ce modèle et notamment la comparer
à celle obtenue pour un modèle de Wright-Fisher biparental classique. Ce projet permettrait
de poursuivre nos investigations de l’impact des préférences d’appariement sur la composition
génétique des populations. Dans une toute autre direction, avec Luis Almeida (CNRS, Sorbonne
Université), je dirige la thèse de Léo Micollet, qui porte sur la modélisation mathématique du
contrôle de populations d’insectes par lâcher de mâles stériles. Cette méthode de contrôle bio-
logique appelée technique de l’insecte stérile a été utilisée en pratique pour lutter par exemple
contre des ravageurs des élevages et des cultures comme la lucilie bouchère ou la mouche du
cerisier, et consiste à relâcher régulièrement un grand nombre de mâles stériles avec lesquels les
femelles présentes se reproduisent, produisant alors des œufs non viables. Pour modéliser cette
méthode, Léo Micollet utilise des modèles individu-centrés multi-types, comme nous le faisons
dans ce chapitre. Son but sera alors d’étudier la dynamique de cette population : ses différentes
limites d’échelles (processus de branchement, système dynamique et processus de diffusion sto-
chastique), sa probabilité d’extinction, le temps nécessaire à sa réémergence en cas d’immigration
ou de taille de population très réduite, et, en lien avec le chapitre suivant, l’optimisation du coût
de cette méthode de contrôle de population d’insectes, par suivi à l’aide de relevés de pièges
permettant d’accéder à des données de comptage.
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Chapitre 3

Suivi de la biodiversité à l’aide de
données citoyennes

3.1 Introduction

Ce chapitre porte sur l’évaluation et le suivi de la biodiversité, à partir de jeux de données is-
sus de programmes de sciences participatives. Ce travail, composé de deux articles (Giraud et al.
(2015) et Coron et al. (2018a)) réalisés en collaboration avec Christophe Giraud (Laboratoire de
Mathématiques d’Orsay), Clément Calenge (Office Français pour la Biodiversité) et Romain Jul-
liard (CESCO, MNHN), est en continuité avec les sujets présentés dans les chapitres précédents,
puisqu’il touche à la diversité génétique des populations, mais s’en détache nettement, par les
approches mathématiques et le niveau de proximité avec les données.

Ce travail a deux motivations. La première est de réaliser des cartes d’abondances relatives
d’espèces, c’est-à-dire, pour une espèce donnée, de comparer son abondance, soit le nombre d’in-
dividus de cette espèce, dans différentes zones de l’espace. Ces cartes et leurs dynamiques tem-
porelles sont très importantes pour la société, notamment pour comprendre et anticiper l’extinc-
tion, le déplacement, ou encore l’émergence et l’invasion d’une espèce. Elles permettent aussi
d’anticiper la réaction des espèces au réchauffement climatique ou à certaines modifications du
territoire. Les scientifiques qui travaillent sur la biodiversité dépensent de ce fait beaucoup de
temps, d’énergie et d’argent, à collecter des données (par exemple à partir de programmes de
capture-marquage-recapture) permettant de créer de telles cartes. Néanmoins, depuis 40 ans envi-
ron, certains programmes, appelés programmes de sciences participatives, ou sciences citoyennes,
permettent de faire appel aux compétences et à la motivation des citoyens pour récolter un grand
nombre de données d’observation de la biodiversité. Ces programmes imposent en général un pro-
tocole très léger, de façon à maximiser la participation des citoyens. C’est là que réside notre
deuxième motivation. Ces données citoyennes manquent de calibration, et en particulier résultent
d’une intensité d’observation inconnue et très inégale spatialement et temporellement. Nous sou-
haitons comprendre comment elles peuvent, malgré ce biais, être utilisées pour améliorer notre
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connaissance de la biodiversité.
Nous nous sommes pour cela placés dans une situation dans laquelle nous avons à notre

disposition deux jeux de données d’observations : l’un issu d’un programme professionnel, et l’un
issu d’un programme de sciences participatives. Cette situation est de plus en plus courante,
et concerne même d’autres domaines scientifiques, comme la météorologie, le climat, l’étude
de la qualité de l’air, des cours d’eau, etc... Plus concrètement, dans ce travail nous avons à
notre disposition deux jeux de données d’observation d’oiseaux en Aquitaine. Le premier jeu de
données est le résultat d’un protocole très précis imposé à des professionnels (plus de détails
seront donnés dans la section suivante), tandis que le deuxième rassemble les observations de
citoyens qui se sont simplement inscrits sur un site web et ont indiqué, s’ils le souhaitaient
et quand ils le souhaitaient, leurs observations d’oiseaux, faites au cours de leur journée ou
éventuellement lors de sorties dédiées à ces observations. L’objectif, à partir de ces données, est de
réaliser des cartes d’abondances relatives d’espèces, c’est-à-dire, pour chaque espèce considérée,
de fournir un estimateur du ratio du nombre d’individus de cette espèce, vivant dans deux zones
différentes de l’espace. Estimer la carte d’abondance relative d’une espèce est possible en utilisant
seulement le premier jeu de données, récolté selon un protocole calibré. Néanmoins les données
issues d’observations citoyennes sont beaucoup plus nombreuses, et ont une couverture spatiale
bien meilleure. Notre approche consiste à combiner ces deux jeux de données au travers d’un
modèle probabiliste, de façon à bénéficier à la fois de la calibration apportée par les données
professionnelles, et de l’abondance des données citoyennes. Nous obtenons alors que combiner
les deux jeux de données permet une estimation plus précise des cartes d’abondances relatives,
que le seul jeu de données professionnel (Théorème 3.1). Cette combinaison permet en outre de
fournir des cartes d’abondances d’espèces pour certaines espèces qui ne sont pas observées dans le
jeu de données professionnel, et d’estimer certains paramètres biologiques, comme les préférences
des espèces considérées à différents types d’habitats (Section 3.4.2), qui sont des informations
très importantes notamment pour prédire la réaction des espèces au changement climatique ou
à certaines transformations du territoire.

Cette situation dans laquelle on dispose de plusieurs jeux de données d’observation d’une
même réalité est de plus en plus courante, et je poursuis dans ce domaine par le co-encadrement
de la thèse d’Emma Thulliez (INSA Rouen) qui porte sur l’évaluation de la qualité de l’air à
partir de combinaison de mesures de concentration en dioxyde d’azote, réalisées par quelques
stations fixes précises et un grand nombre de micro-capteurs de fiabilité bien moindre. Ce travail
en cours est détaillé dans la section de perspectives 3.6.

3.2 Données

Comme mentionné précédemment, notre objectif est d’estimer des cartes d’abondances re-
latives d’espèces à partir de deux jeux de données d’observations d’oiseaux en Aquitaine : un
jeu de données qui sera dit "standardisé" (car les observateurs ont dû suivre un protocole précis
pour y participer), et un jeu de données qui sera dit "opportuniste" (car les observations rap-
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portées peuvent avoir lieu lors de déplacements non nécessairement dévoués à ces observations).
La qualité de nos estimations sera évaluée à l’aide d’un troisième jeu de données qui est aussi
standardisé mais comporte moins de données que le premier. Je présente maintenant ces trois
jeux de données.

Le premier jeu de données, standardisé, est fourni par l’Office Français pour la Biodiversité, et
est appelé ACT (pour Alaudidae, Columbidae, Turdidae, qui sont les principaux clades d’oiseaux
qui concernent ce programme ; le Tableau 3.1 présente la liste des espèces considérées). Dans ce
programme, la région Aquitaine a été discrétisée en 64 quadrats, et dans chaque quadrat, 5 points
espacés de 1km dans des habitats non urbains ont été définis. Ces points sont visibles dans la
Figure 3.1(B). Chaque point a été visité deux fois, pendant exactement 10 minutes, le matin, et
sous des conditions climatiques appropriées. Lors de chaque visite, l’espèce de chaque oiseau vu
ou entendu a été enregistrée, et pour chaque espèce le maximum des deux comptes issus des deux
visites a été retenu, selon des protocoles classiques dans le domaine de l’observation d’oiseaux.
Les observateurs sont des professionnels, employés par l’Office Français pour la Biodiversité ou
certaines associations de chasseurs. Entre 2008 et 2011, environ 9 500 observations d’oiseaux ont
été rapportées.

Pour le jeu de données opportuniste, on utilise la base de données en ligne mise en place
par la Ligue pour la Protection des Oiseaux. Chaque citoyen capable d’identifier des oiseaux
peut s’enregistrer sur ce site web, et rapporter ses observations (ou certaines de ses observations)
d’oiseaux, en mentionnant l’espèce, la date, l’heure et le lieu, à 500m près. Des centaines d’ob-
servateurs ont ainsi rapporté des centaines de milliers d’observations. Nous ignorons dans quel
cadre ces observations ont été réalisées, et notamment la motivation des observateurs, s’ils rap-
portent certaines observations plutôt que d’autres ou non, ou encore leur temps passé à observer.
Nous avons gardé uniquement les observations réalisées durant la même période de temps que
celle du jeu de données standardisées, c’est-à-dire Avril à mi-Juin, entre 2008 et 2011. Ceci nous
donne environ 115 000 observations de 34 espèces d’oiseaux (voir le Tableau 3.1), dont les lieux
sont représentés dans la Figure 3.1 (B). Notons en particulier que seule une partie des espèces
observées dans le programme de la LPO font partie du programme ACT présenté précédemment.

Le jeu de données que nous utiliserons pour évaluer la qualité de nos observations est fourni
par le programme STOC (Suivi temporel des oiseaux communs, Jiguet et al. (2012)), un pro-
gramme de surveillance des oiseaux nicheurs mis en place par le Muséum National d’Histoire
Naturelle. Le protocole de ce programme est assez proche de celui du programme ACT, mais
sans restriction sur les espèces d’intérêt. Ainsi les 34 espèces observées dans le jeu de données
fourni par la Ligue pour la Protection des Oiseaux sont aussi présentes dans ce jeu de données.
Entre 2008 et 2011, ce programme a donné lieu à 15 241 observations dans 251 points d’écoute,
aussi dans un habitat non urbain.
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Table 3.1 – Liste des 34 espèces d’oiseaux observées. Les 13 espèces suivies dans le programme
ACT sont indiquées par une astérisque.

Latin name Espèce Latin name Espèce
Aegithalos caudatus Long-Tailed Tit Alauda arvensis∗ Eurasian Skylark
Alectoris rufa∗ Red-Legged Partridge Carduelis carduelis European Goldfinch
Carduelis chloris European Greenfinch Certhia brachydactyla Short-Toed Treecreeper
Columba palumbus∗ Common Wood Pigeon Coturnix coturnix∗ Common Quail
Cuculus canorus Common Cuckoo Cyanistes caeruleus Eurasian Blue Tit
Dendrocopos major Great Spotted Woodpecker Erithacus rubecula European Robin
Fringilla coelebs Common Chaffinch Garrulus glandarius∗ Eurasian Jay
Hippolais polyglotta Melodious Warbler Lullula arborea∗ Woodlark
Luscinia megarhynchos Common Nightingale Milvus migrans Black Kite
Parus major Great Tit Passer domesticus House Sparrow
Phasianus colchicus∗ Common Pheasant Phoenicurus ochruros Black Redstar
Phylloscopus collybita Common Chiffchaff Pica pica∗ Eurasian Magpie
Pica viridis Eurasian Green Woodpecker Sitta europaea Eurasian Nuthatch
Streptopelia decaocto∗ Eurasian Collared Dove Streptopelia turtur∗ European Turtle Dove
Sylvia atricapilla Eurasian Blackcap Troglodytes troglodytes Eurasian Wren
Turdus merula∗ Common Blackbird Turdus philomelos∗ Song Thrush
Turdus viscivorus∗ Mistle Thrush Upupa epops Eurasian Hoopoe

3.3 Modèle

Nous divisons l’espace en J zones, ou sites, et nous voulons comparer, pour chacune des I

espèces considérées, son abondance à deux sites différents. Pour cela, nous supposons que nous
avons accès à deux jeux de données, indicés par k. On notera k = 0 pour le jeu de données
standardisé, et k = 1 pour le jeu de données opportunistes. L’ensemble de ces jeux de données
nous donne donc le nombre Xijk d’observations d’individus de l’espèce i ∈ [[1, I]], dans la zone
j ∈ [[1, J ]], pour le jeu de données k. On modélise alors les comptages Xijk par

Xijk ∼ Poisson(NijOijk), pour i = 1, . . . , I, j = 1, . . . , J et k = 0, 1,

où Nij est le nombre d’individus de l’espèce i dans la zone j, et Oijk modélise l’intensité résultant
du protocole d’observation. La loi de Poisson est très classique dans l’analyse des données de
comptage, et résulte de l’hypothèse qu’à chaque instant, chaque animal de chaque espèce est
observé ou non, indépendant des autres animaux. Notre modèle néglige donc les interactions
entre individus et entre espèces. Différentes pistes d’amélioration de ce travail sont évoquées
dans la Section 3.6. Pour finir nous supposons pour des raisons d’identifiabilité que chaque zone
a été visitée dans les deux jeux de données, et qu’au moins une espèce a été suivie dans les deux
jeux de données.

3.3.1 Premier modèle

Dans un premier temps, nous supposons que l’intensité d’observation Oijk est de la forme

Oijk = PikEjk,
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Figure 3.1 – Emplacements des observations pour les trois jeux de données disponibles. (A)
Jeu de données ACT ; (B) Jeu de données LPO ; (C) Jeu de données STOC. L’espace est divisé
en quadrats de taille 30× 20 km, qui sont les sites, ou les zones dans notre analyse. Le quadrat
contenant la métropole de Bordeaux (indiqué par une étoile dans la carte (A)) a été retiré de
l’analyse.

où Pik et Ejk sont des quantités vouées à modéliser les biais induits par la variabilité du processus
d’observation. Notre modèle consiste donc à supposer que les impacts relatifs de l’espèce et de
la zone sont indépendants. Un modèle plus complexe prenant en compte la division de l’espace
en différents types d’habitats sera présenté dans la Section 3.3.2. Pour l’instant, notre modèle se
réécrit donc :

Xijk ∼ Poisson(NijPikEjk), pour i = 1, . . . , I, j = 1, . . . , J et k = 0, 1, (3.1)

Les paramètres Pik peuvent être interprétés comme la probabilité de détection et de report
d’une observation d’un individu de l’espèce i, pour le jeu de données k. Les paramètres Ejk, que
l’on appellera intensité d’observation dans la zone j pour le jeu de données k, représente l’impact
de la variabilité de l’effort (typiquement le temps passé à observer, le nombre de sorties, le nombre
d’observateurs, la variabilité des conditions d’observations...) dans la zone j pour le jeu de données
k. Rappelons que nous nous intéressons au cas où le premier jeu de données est standardisé, tandis
que le deuxième est opportuniste. Cela peut s’interpréter mathématiquement par le fait que
l’intensité d’observation est connue (à une constante multiplicative près) pour le jeu de données
standardisé (k = 0), et peut être supposée très grande pour le jeu de données opportuniste
(k = 1). Typiquement pour le jeux de données standardisé fourni par l’Office français pour la
biodiversité et présenté dans la Section 3.2 nous supposons que l’effort d’observation est le même
dans chaque zone j, donc Ej0 ne dépend pas de j. En revanche les intensités d’observations Ej1

sont supposées grandes mais inconnues.
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3.3.2 Raffinement : ajout d’une structure

Dans cette section, nous proposons un modèle plus général, qui prend en compte l’impact
de covariables, comme le type d’environnement (urbain, forestier, agricole, ...), la densité de
population humaine, l’altitude,..., à la fois sur l’abondance de chaque espèce et sur le processus
d’observation. Pour plus de simplicité, nous supposerons par la suite que ces covariables sont des
types d’environnement, mais notre approche peut être plus générale. Dans notre travail, l’habitat
associé à chaque observation pourra être inconnu, il sera traité comme une variable latente, dont
la loi est caractérisée par des paramètres appelés préférences d’habitat, que nous chercherons à
estimer. Les différents types d’habitat sont indicés par h ∈ {1, 2, ..., H}.

Espèces : abondances et préférence d’habitat Comme dans la Section 3.3.1, on note Nij

le nombre d’individus de l’espèce i dans la zone j. On suppose alors que la densité de l’espèce i

au point x de la zone j est donnée par

NijSih(x)∑
h′ Sih′V zone

h′j

,

où V zone
hj est l’aire occupée par l’habitat h dans la zone j et h(x) est le type d’habitat au point

x. Les paramètres Sih peuvent donc être vus comme la préférence de l’espèce i pour l’habitat h,
qui a un intérêt applicatif fort, et que nous souhaitons estimer.

Observations rapportées Comme dans la Section 3.3.1, on indice le jeu de données standar-
disé par k = 0 et le jeu de données opportuniste par k = 1. Chaque zone j est alors divisée en
plusieurs cellules indicées par c, telles que l’on connaît la cellule dans laquelle chaque observation
a eu lieu. Cette cellule pouvant typiquement être une commune, un quartier, ou un groupe de
communes. Notons que le découpage en cellules peut dépendre du jeu de données et que dans
chaque jeu de données seule une fraction des cellules a été visitée au moins une fois par les obser-
vateurs. Pour une cellule c visitée dans le jeu de données k, on note Xick le nombre d’observations
rapportées, d’un individu de l’espèce i. Comme pour le modèle précédent, on note Eck l’intensité
d’observation dans la cellule c pour le jeu de données k, et on note Pik la probabilité de détection
et rapport d’une observation de l’espèce i pour le jeu de données k. Pour le jeu de données k, on
modélise l’intensité d’observation au point x dans la cellule c par

qh(x)kEck∑
h′ qh′kV

cell
h′c

,

où V cell
hc est l’aire (connue) de la cellule c couverte par l’habitat h et qhk ∈ [0, 1] modélise la

préférence des observateurs pour l’habitat h, pour le jeu de données k. On a alors

Xick ∼ Poisson

(
NijEckPik

∑
h

qhk∑
h′ qh′kVh′c

× Sih∑
h′ Sih′Vh′j

Vhc

)
. (3.2)
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Rappelons que les aires V zone
hj et V cell

hc sont connues dans ce modèle. Comme précédemment on
supposera naturellement que pour le jeu de données standardisées les intensités d’observations Ec0

sont connues (à une constante multiplicative près), et nous supposons par ailleurs que l’habitat
associé à chaque observation standardisée est soit connu, soit satisfait que les ratios qh0/q10 sont
connus pour tout h. Les autres paramètres sont inconnus.

Notre modèle consiste à supposer une différence d’échelle spatiale entre les individus observés
et les observateurs : les oiseaux choisissent leur position (ou leur habitat) à l’échelle de la région,
tandis que les observateurs choisissent la position de leur observation à l’échelle de la cellule
(qui sera typiquement de l’échelle de la commune). Enfin, supposer que les observateurs comme
les individus observés n’ont pas de préférences particulières à certains types d’habitats revient
à poser qhk = Sih = 1 pour tout h, auquel cas on obtient que le nombre Xick d’observations de
l’espèce i dans la cellule c de la zone j pour le jeu de données k suivra le premier modèle (3.1).
Le modèle que nous venons de proposer consiste donc bien en un raffinement du premier modèle.

3.4 Résultats : théorie, et application aux données

3.4.1 Résultats théoriques

Identifiabilité et estimation des paramètres Pour les deux modèles (3.1) et (3.2), nous
pouvons prouver par des changements de variables adéquats l’identifiabilité des abondances re-
latives Nij/Ni1 ainsi que des préférences à l’habitat Sih, qui sont les deux quantités qui nous
intéressent, à partir des observations.

Plus précisément pour le modèle (3.1), le changement de variables

Ñij = NijPi1E10
P10

P11
, Ẽjk =

Ejk

E10
× P1k

P10
, et P̃ik =

Pik

Pi1
× P11

P1k
.

est tel que pour toute espèce i, toute zone j, tout jeu de données k, ÑijẼjkP̃ik = NijEjkPik,
Ñij/Ñi1 = Nij/Ni1, et Ẽj0 = Ej0/E10 est connu. Alors en posant nij = log(Ñij), ejk = log(Ẽjk)

et pik = log(P̃ik), le modèle (3.1) peut être vu comme un modèle linéaire généralisé :

Xijk ∼ Poisson(λijk), avec log(λijk) = nij + ejk + pik, (3.3)

où ej0 = log Ẽj0 est connu, pi1 = 0 pour tout i, et p10 = 0. On note alors l’estimateur par
maximum de vraisemblance (N̂ij , Êjk, P̂ik) des paramètres Ñij , Ẽjk et P̃ik, qui peut être obtenu
en pratique en utilisant la commande glm dans R.

Le modèle présenté dans la Section 3.3.2, qui intègre une structure en habitat, contient des
non-linéarités qui exigent une autre approche d’estimation car la vraisemblance de ses para-
mètres ne peut pas être maximisée de cette façon. Nous choisissons une approche d’estimation
bayésienne implémentée par l’échantillonneur de Gibbs JAGS (Plummer (2003)). Nous appelons
ce programme dans R (R Core Team (2014)) en utilisant le package rjags (Plummer (2014)).
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Nous choisissons des priors non informatifs pour les différents paramètres à estimer et l’échan-
tillonneur JAGS fournit, en sélectionnant les données simulées les plus proches des données
réelles, des échantillons distribués selon la distribution a posteriori des paramètres.

Amélioration de la précision des cartes (sans structure spatiale) Notre premier résultat
montre, pour le premier modèle (3.1), que les estimations des abondances relatives d’espèces
obtenues en combinant le jeu de données standardisé (pour lequel les ratios d’efforts d’observation
Ej0/Ej′0 sont connus) et le jeu de données opportuniste (pour lequel les efforts Ej1 peuvent être
supposés grands) sont asymptotiquement meilleures que celles obtenues en utilisant uniquement
le jeu de données standardisé. Notre résultat permet même de quantifier la réduction de variance
obtenue grâce à la combinaison des données.

Théorème 3.1. Sous le Modèle (3.1), posons N̂ij et N̂0
ij les estimateurs de maximum de vraisem-

blance du paramètre Ñij obtenus en utilisant respectivement les deux jeux de données (standardisé
et opportuniste), ou le jeu de données standardisé uniquement. On a

(i)

lim
Ej1→∞

E

(
N̂ij

N̂i1

)
= E

(
N̂0

ij

N̂0
i1

)
=

Ñij

Ñi1

=
Nij

Ni1
(3.4)

(ii)

lim
Ej1→∞

Var(N̂ij) = Var(N̂0
ij)×

Pi0Nij∑
l Pl0Nlj

. (3.5)

Ce résultat nous dit que lorsque l’effort d’observation ayant généré les données opportunistes
est très grand (ce qui est ce que l’on attend de ce type de jeux de données), alors l’ajouter au
jeu de données standardisées pour estimer les abondances relatives d’espèces permet de faire
décroître la variance des estimations, en la multipliant par un facteur Pi0Nij∑

l Pl0Nlj
. Cette réduction

de variance est en particulier importante pour les espèces rares (i.e. lorsque Nij est petit), difficiles
à détecter (i.e. lorsque Pi0 est petit), ou lorsque le nombre I d’espèces suivies est grand.

Amélioration de la précision des cartes (avec structure spatiale) Pour le Modèle (3.2)
qui prend en compte une structuration de l’espace en plusieurs types d’habitats, nous évaluons la
performance de notre approche de combinaison de jeux de données en utilisant des données simu-
lées. Plus précisément nous fixons tous les paramètres nécessaires (les abondances de population
Nij , les efforts Eck, les probabilités Pik, et les préférences qhk et Sih, puis nous générons deux jeux
de données, suivant le Modèle (3.2). Nous estimons alors les paramètres d’intérêt (notamment
les abondances relatives Nij/Ni1 et les préférences Sih/Si1), et nous comparons les distribution
postérieures obtenues, aux valeurs fixées pour ces paramètres. Plus précisément nous réalisons
ces estimations pour trois situations : (i) en utilisant uniquement les données standardisées et le
modèle (3.2) qui a été utilisé pour générer les jeux de données ([Stand only with hab]), (ii) en
utilisant les deux jeux de données et toujours le modèle (3.2) ([Opp+Stand with hab]), (iii) en
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utilisant les deux jeux de données mais en faisant nos estimations en supposant que les données
sont générées selon le premier Modèle (3.1) ([Opp+Stand no hab]).

Les Figures 3.2A et 3.2B montrent, comme prouvé dans le Théorème 3.1 en l’absence de
structuration en habitats, que l’estimation obtenue en combinant les deux jeux de données est plus
précise que celle obtenue en utilisant uniquement le jeu de données standardisé. Elles illustrent
aussi le fait que, sans surprise, le fait de négliger les préférences pour différents types d’habitats
mène à des estimations biaisées des abondances relatives d’espèces. Notons que pour la Figure
3.2B nous choisissons comme abondance relative estimée N̂ij/N̂i1 la moyenne de la distribution
postérieure de Nij/Ni1.

(A) Exemple de distribution a posteriori d’une
abondance relative d’espèce Ni2/Ni1 pour une es-
pèce i fixée, estimée avec la procédure [Stand only
with hab] (en noir), [Opp+Stand with hab] (en
bleu) et [Opp+Stand no hab] (en pointillé). La
valeur fixée (que l’on cherche à retrouver) est en
rouge.

(B) Boxplots des différences relatives
(N̂

[model]
ij /N̂

[model]
i1 )−(Nij/Ni1)

Nij/Ni1
entre abondances

estimées et "réelles", en utilisant les deux jeux
de données (Opp+Stand) ou en utilisant unique-
ment le jeu de données standardisé (Stand only),
et en prenant en compte, ou non, la structuration
en habitat.

Figure 3.2

3.4.2 Application aux données étudiées

En pratique, les "zones" de notre modèle, indicées par j, seront les 63 quadrats définis dans
le cadre du programme ACT (Fig. 3.1(A)). Le quadrat contenant la zone de Bordeaux a été
enlevé car nous avons supposé et observé que le comportement des observateurs opportunistes
et la structuration de l’espace en différents habitats étaient trop différents dans ce quadrat, par
rapport aux autres. Pour les deux jeux de données ACT et STOC, nous prenons comme intensité
d’observation dans la zone j simplement le nombre de visites dans cette zone entre les années
2008 et 2011, puisque toutes les visites doivent avoir la même durée. L’habitat a été défini en
utilisant l’occupation du sol, rendue disponible par Corine Land Cover. Plus précisément nous

https://www.statistiques.developpement-durable.gouv.fr/corine-land-cover-0
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avons retenu 7 catégories d’habitat permettant à la fois l’identifiabilité du modèle et une étude
pertinente du comportement des espèces considérées : zone urbaine, agriculture intensive, paysage
naturel ouvert, terres agricoles, forêt de conifères, forêts d’arbres à feuilles caduques, et forêts
mixtes.

Réduction de variance Le Tableau 3.2 illustre la réduction de variance énoncée dans le
Théorème 3.1, pour les jeux de données présentés dans la Section 3.2. Pour remplir ce tableau
nous calculons pour chaque espèce la corrélation entre les abondances relatives estimées pour
toutes les zones par notre approche (soit avec le seul jeu de données standardisé ACT, soit en
combinant le jeu de données standardisées ACT et le jeu de données opportunistes LPO) et les
abondances relatives estimées en utilisant le jeu de données standardisé de référence, STOC.
Les deux premières lignes du Tableau 3.2 donnent la médiane de ces corrélations obtenues pour
chaque espèce, ainsi que leurs premier et dernier quartiles. Nous obtenons que ces médianes et
quartiles sont plus élevés en combinant les deux jeux de données ACT et LPO, ce qui illustre le
fait que les estimations obtenues en combinant les deux jeux de données sont plus précises que
celles obtenues en utilisant seulement le jeu de données standardisé.

Il s’avère que le jeu de données standardisé que nous utilisons est très riche : du fait des
dix visites par zone et par année il est le résultat d’une intensité d’observation très élevée,
ce qui n’est pas a priori nécessaire pour notre approche. Nous avons donc dans un deuxième
temps étudié dans quelle mesure l’amélioration des estimations apportée par la combinaison des
jeux de données se maintient lorsque le jeu de données standardisé est moins riche. Nous avons
pour cela réduit artificiellement le jeu de données ACT en sélectionnant aléatoirement une seule
visite par zone et en réduisant les données du jeu de données ACT à celles obtenues lors de ces
visites sélectionnées. La taille du jeu de données ACT est divisée environ par 18, suite à cette
opération. Les deux dernières lignes du Tableau 3.2 comportent les mêmes quantités que les
deux premières lignes, mais en remplaçant le jeu de données standardisé ACT par ce nouveau
jeu de données artificiellement réduit et dont les capacités prédictives deviennent alors faibles
(corrélation quasiment nulle avec les estimations produites par le jeu de données de référence
STOC). Nous obtenons en revanche que la qualité des estimations obtenues en combinant les
deux jeux de données a très peu diminué. Ces lignes illustrent en pratique l’intérêt de notre
approche, déjà énoncé dans le Théorème 3.1 : combiner un jeu de données standardisées de
taille très faible avec un jeu de données opportuniste permet d’estimer les abondances relatives
de plusieurs espèces de façon plus satisfaisante et à moindre coût. La combinaison des jeux de
données permet en outre de donner des estimations pour les abondances relatives d’espèces qui
ne sont pas observées dans le jeu de données standardisé (deuxième colonne du Tableau 3.2).
Ces estimations sont aussi de meilleure qualité que celles obtenues par le seul jeu de données
standardisé, pour les espèces qu’il contient.

Des résultats similaires sont donnés dans le Tableau 3.3 pour le modèle avec structure spatiale
(3.2). Notons que les résultats des Tableaux 3.2 et 3.3 diffèrent légèrement pour le modèle (3.1),
ce qui s’explique par des méthodes d’estimation différentes : maximum de vraisemblance pour
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le Tableau 3.2 et estimation Bayesienne avec prior non informatif pour le Tableau 3.3. Comme
précédemment nous obtenons que combiner les deux jeux de données et prendre en compte la
structure spatiale en habitat permet une amélioration des estimations.

Jeux de données utilisés Dans ACT Pas dans ACT
Standardisé 0.27 (0.13 – 0.49) —
Standardisé + opportuniste 0.55 (0.38 – 0.68) 0.35 (0.19 – 0.47)
Standardisé réduit 0.06 (-0.07 – 0.23) —
Standardisé réduit + opportuniste 0.54 (0.25 – 0.61) 0.28 (0.08 – 0.40)

Table 3.2 – Médiane (et premier et dernier quartiles entre parenthèses) des corrélations, pour
chaque espèce, entre abondances relatives estimées en utilisant notre approche d’une part et le
jeu de données de référence (STOC) d’autre part.

Données et modèle Dans ACT Pas dans ACT
[Opp+Stand avec hab] 0.49 (0.30–0.54) 0.39 (0.12–0.54)
[Stand only avec hab] 0.29 (0.03–0.46) –
[Opp+Stand sans hab] 0.44 (0.32–0.68) 0.31 (0.19–0.42)

Table 3.3 – Médiane des corrélations (ainsi que premier et dernier quartiles) entre les estimations
d’abondances relatives obtenues pour chaque espèce grâce aux observations STOC seules d’une
part et grâce à différentes approches d’autre part : [Opp+Stand avec hab] correspond à la prise
en compte de l’habitat et la combinaison des jeux de données, [Stand only avec hab] correspond à
la prise en compte de l’habitat et l’utilisation du seul jeu de données standardisé, et [Opp+Stand
sans hab] correspond à la combinaison des jeux de données mais sans prise en compte de l’habitat.

Cartes d’abondances relatives Cette section donne quelques résultats écologiques qui sont
un autre fruit de notre travail. La Figure 3.3 donne la carte d’abondance de la sitelle torchepot,
en utilisant les modèles avec et sans prise en compte de l’habitat. Une telle carte peut bien
sûr être donnée pour chaque espèce du jeu de données. Remarquons aussi que notre approche
pourrait aussi donner l’évolution de cette carte au cours du temps, en remplaçant les zones
spatiales par des couples "zone-année" par exemple. Cette analyse, couplée à l’estimation des
préférences de chaque espèce à chaque type d’habitat (présentée dans le prochain paragraphe),
serait pertinente dans le cadre de la prédiction de la réaction des espèces au réchauffement
climatique. Elle nécessiterait toutefois, pour plus d’intérêt, d’avoir des données couvrant un plus
grand nombre d’années.
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Figure 3.3 – Cartes d’abondances relatives de la sitelle torchepot avec ou sans prise en compte
de l’habitat. Pour chaque quadrat, le niveau de gris matérialise une version renormalisée entre 0

et 1 de la quantité N̂model
ij (i.e. ces niveaux de gris vont de 0 (abondance la plus faible, quadrat

blanc) à 1 (abondance la plus élevée, quadrat noir).

Estimation des préférences d’habitat Comme mentionné précédemment, un produit utile
de notre approche est l’estimation des préférences (Sih)1≤h≤H de chaque espèce i pour les diffé-
rents types d’habitats, qui sont des quantités très importantes pour les écologues et qui requièrent
habituellement de gros efforts pour être estimées (Lele et al. (2013); Boyce et McDonald (1999)).
Dans la Figure 3.4 nous donnons à titre d’exemple les préférences que nous obtenons pour le pic
épeiche. Cette espèce est connue pour préférer les habitats forestiers, ce qui se retrouve dans nos
estimations.

Figure 3.4 – Préférences (relatives) du pic épeiche pour les différents types d’habitats considérés.
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3.5 Éléments de preuves

La preuve du Théorème 3.1 repose sur l’analyse du modèle linéaire (3.3). Tout d’abord nous
montrons l’identifiabilité des paramètres de ce modèle en montrant que sa matrice de régression
a un noyau de dimension I + J + 1 tel que les contraintes données juste après l’Équation (3.3)
(qui correspondent à rappeler que l’on dispose d’un jeu de données standardisé pour lequel les
efforts d’observation sont connus, à constante multiplicative près) permettent l’identifiabilité des
abondances relatives étudiées. La suite de la preuve consiste à exprimer l’estimateur de maximum
de vraisemblance de ces abondances relatives et à en étudier l’espérance et la variance, notamment
lorsque l’effort correspondant au jeu de données opportuniste tend vers l’infini.

3.6 Perspectives

Améliorations du modèle Le modèle que nous considérons suppose que les individus ob-
servés (ainsi que les observateurs) se comportent indépendamment les uns des autres. Il néglige
également le fait que les erreurs d’identifications peuvent créer des interactions entre les nombres
d’observations d’oiseaux de différentes espèces (plus fréquemment confondues l’une avec l’autre,
typiquement), et que ces interactions peuvent varier d’une zone à l’autre. Ces deux limites du
modèle peuvent respectivement être résolues en remplaçant la distribution de Poisson par une
autre distribution et en faisant dépendre la probabilité de détection d’une espèce de l’abondance
des autres espèces. Ce nouveau modèle serait plus complexe à étudier mais conduirait à des
résultats plus réalistes et à une analyse intéressante des interactions entre individus et entre
espèces.

Combinaison de données pour la qualité de l’air Comme mentionné dans l’introduction
de ce chapitre, la situation dans laquelle les scientifiques ont accès à différents ensembles de don-
nées mesurant la même quantité ou étudiant le même phénomène est désormais très courante.
La combinaison de jeux de données au travers de modèles probabilistes dont les paramètres
peuvent être inférés par des méthodes statistiques est donc une question mathématique intéres-
sante ayant de forts enjeux applicatifs. Je co-encadre actuellement la thèse de doctorat d’Emma
Thulliez (INSA Rouen), avec Bruno Portier, et en collaboration d’une part avec Jean-Michel
Poggi (Université Paris-Saclay) et d’autre part avec ATMO Normandie qui est une association
chargée par l’État d’évaluer la qualité de l’air en Normandie. Un des objectifs de cette thèse est
de produire des cartes de concentration de certains polluants dans l’air (comme le NO2 ou les
particules fines). Pour ce faire, en prenant l’exemple du NO2 (dioxyde d’azote), nous avons accès
à trois jeux de données :

— Des ensembles de cartes de concentration en NO2 sur une zone donnée à différents instants,
qui sont des sorties de modèles physico-chimiques, prenant en compte l’intensité annuelle
du trafic, les émissions des entreprises, la forme des routes, ainsi que certaines données
météorologiques (la température, la vitesse du vent, l’humidité, etc...). Un exemple de telle
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carte, issue du modèle SIRANE (Soulhac et al. (2017)), est donné dans la Figure 3.5, et
nous pouvons typiquement avoir accès à une carte par heure, sur une période donnée.
Notons que ces modèles physico-chimiques sont régulièrement améliorés, pour prendre en
compte de nouveaux phénomènes. Ils négligent par ailleurs certaines spécificités locales,
comme l’altitude, la pente des rues, les travaux de voirie, etc...

— Des mesures de concentration en NO2 dans l’air réalisées par quelques (4, pour la métropole
de Rouen) stations de références, qui sont supposées fournir des mesures précises et non
biaisées de la vraie concentration, que nous cherchons à estimer. Ces stations fournissent
aussi des mesures de concentrations d’autres polluants ainsi que des mesures météorolo-
giques.

— Des mesures de concentration en NO2 réalisées par un grand nombre (jusqu’à 70, pour
la métropole rouennaise) de micro-capteurs qui mesurent la même concentration mais en
utilisant une technologie très différente de celle des stations fixes. Ces micro-capteurs sont
beaucoup moins chers, mais leurs mesures sont moins précises que celles des stations fixes,
et elles sont également biaisées. La Figure 3.6 montre des mesures réalisées par un micro-
capteur durant un mois, ainsi que les estimations fournies par la carte SIRANE à l’emplace-
ment de ce micro-capteur. Ces appareils fournissent également des mesures pour plusieurs
autres quantités, telles que la pression, la température, la vitesse du vent, ... Nous pourrons
aussi par la suite utiliser des mesures réalisées par des micro-capteurs mobiles qui ont été
installés récemment sur des bus de la métropole. Notons que la Figure 3.6 montre un chan-
gement de comportement du micro-capteur un peu après le milieu de la période considérée.
Ce changement indique que des approches consistant à calibrer les micro-capteurs en les
accolant temporairement à des stations fixes, qui sont souvent utilisées, ont peu de chances
d’être performantes dans ce contexte.

Figure 3.5 – Un exemple de carte de concentration en NO2 issue du modèle SIRANE.

Notre approche consiste à supposer que les résultats du modèle physico-chimique ne peuvent
pas être exacts, car ce modèle fait certaines hypothèses, comme une altitude constante ou une
occupation du sol constante. Ils négligent généralement la présence de parcs et n’ont pas accès
à l’intensité précise du trafic, et à la présence de travaux de voirie, alors que ces caractéristiques
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spatio-temporelles jouent un rôle dans la qualité de l’air. Nous modélisons donc les biais de ce
modèle physico-chimique et estimons les paramètres de ce biais en utilisant les stations fixes
disponibles et les mesures des micro-capteurs. Cette combinaison de données de qualités diffé-
rentes est différente de celle rencontrée pour l’utilisation de programmes de science citoyenne
dans l’évaluation de l’abondance des espèces, mais nous traitons ces deux questions en utilisant
une approche de modélisation probabiliste intégrative similaire.

Retour à la génétique Avec Sophie Donnet (INRAE), Raphaël Leblois (INRAE), Miguel De
Navascués (INRAE), Julien Stoehr (CEREMADE, Université Paris Dauphine), nous souhaitons
développer des méthodes statistiques permettant de combiner au travers de modèles probabi-
listes des données génétiques et des données de comptage, de façon à améliorer l’estimation de
paramètres démographiques qui pourrait être faite en utilisant seulement l’un des jeux de don-
nées. Ces données pourront être des données issues de programme d’observations professionnels
ou citoyens, comme ceux que j’ai présentés dans la Section 3.2 de ce chapitre, ou bien provenir
de protocoles de capture-marquage-recapture par exemple. Les modèles de dynamique de popu-
lation qui pourront être utilisés dans ce projet seront par exemple des modèles de naissance et
mort avec interaction du type de ceux étudiés dans le Chapitre 2 ou éventuellement des modèles
de génétique de population comme celui présenté dans le Chapitre 1. Pour ce projet nous avons
proposé un post-doctorat qui sera réalisé par Lucas Rey (Université Paris-Dauphine), et des
applications à l’étude de la dynamique d’espèces de ravageurs de cultures seront abordées dans
ce cadre. Cette dernière perspective pourra aussi rejoindre la perspective mentionnée en fin de
Chapitre 2 sur le contrôle de population d’insectes par technique de l’insecte stérile. En effet les
ravageurs de culture comme Drosophile Suzukii (la mouche du cerisier) sont des exemples d’es-
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pèces pour lesquelles à la fois des données de comptage et des données de séquençage génétique
sont susceptibles d’être disponibles. Comme ces données présentent à la fois des coûts et des in-
térêts différents, en termes d’inférence démographique, la question d’un éventuel arbitrage entre
les récoltes de ces deux types de données peut être posée. Pour finir ce dernier sujet rejoint le
sujet de la thèse d’Arnaud Becheler (Becheler (2018)) que j’ai co-encadrée avec Stéphane Dupas
(IRD, Gif-s/-Yvette) et qui portait sur le développement et l’implémentation d’un modèle pour
la dynamique démo-génétique du frelon asiatique, dans un paysage structuré.
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Conclusion et bilan des perspectives

Durant les dernières années je me suis intéressée, de façon principale, à la modélisation et
l’étude mathématique de l’évolution génétique des populations à reproduction sexuée et de la
biodiversité ainsi qu’à la combinaison de jeux de données. J’ai essayé de trouver un équilibre entre
la simplicité des modèles, qui permet leur étude mathématique et la compréhension essentielle des
phénomènes étudiés, et la complexité des modèles qui permet leur confrontation à des données
de façon pertinente. J’ai hâte de poursuivre mon travail dans ces deux directions et de découvrir
de nouveaux sujets, de nouveaux enjeux, de nouvelles collaborations.

Les perspectives que j’ai développées à la fin de chaque chapitre portent d’abord sur l’étude de
la proportion de génome transmis dans les populations biparentales, dans la lignée des travaux
que j’ai présentés dans le Chapitre 1. J’aimerais notamment enrichir ce travail par l’étude de
l’impact de différentes formes de sélection sur la proportion de génome transmis par un individu,
mais aussi relier ce travail à des approches beaucoup plus appliquées qui consistent à estimer des
paramètres d’histoire démographique à partir de données génétiques. Ensuite, les travaux que
j’ai présentés dans le Chapitre 2 et qui portent notamment sur l’étude des limites d’échelles et
du contrôle des processus de naissance et mort avec interactions trouveront un débouché naturel
dans l’étude par Léo Micollet dans le cadre de sa thèse, du contrôle de populations d’insectes par
technique de l’insecte stérile. Enfin la combinaison de jeux de données que j’ai présentée dans le
Chapitre 3 se prolongent d’une part dans la thèse en cours d’Emma Thulliez, dans le cadre de
l’estimation de cartes de pollution de l’air à partir de mesures de différentes qualité, et d’autre
part sur la combinaison de données de comptages et de données de séquençages pour estimer les
paramètres démographiques d’une population, qui sera étudiée par Lucas Rey dans le cadre de
son post-doctorat. Ces sujets sont très différents les uns des autres mais peuvent se rejoindre. En
particulier la technique de l’insecte stérile pourra avantageusement être étudiée par combinaison
de données démographiques et génétiques.
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