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Introduction

Ma recherche se situe en probabilités pour la biologie. Je suis particuliérement intéressée par
la modélisation et ’analyse probabiliste de la diversité génétique, de la biodiversité, et de leurs
dynamiques temporelles et spatiales. Ce manuscrit, aprés une introduction destinée a expliquer
mes motivations, mes approches et le contexte général de mes recherches, est divisé en trois
parties qui portent sur des questions biologiques différentes, abordées en développant des modéles
mathématiques différents, et avec des collaborateurs différents.

Approche générale, motivation et parcours Mon travail consiste a répondre a une ques-
tion biologique a I’aide de modéles mathématiques que je crée puis que j’étudie. Une des difficultés
de ce domaine est de définir une bonne question biologique, c’est-a-dire une question qui inté-
resse les biologistes, qui soit bien posée, et a laquelle on puisse répondre a ’aide de modéles
suffisamment simples pour étre étudiés mathématiquement. Bien que le vivant présente en géné-
ral des comportements complexes, c’est justement cette simplicité qui doit permettre de capter
I’essence des phénoménes biologiques considérés, mais aussi d’obtenir des résultats et de déve-
lopper des techniques mathématiques qui puissent présenter un intérét aussi pour la recherche
en mathématiques. Enfin, la prise en compte des données, leur modélisation et leur utilisation
pour mieux modéliser et comprendre le vivant est aussi un enjeu trés important de mon domaine
de recherche, que j’essaye d’aborder. J’ai travaillé souvent avec des biologistes, toujours avec des
mathématiciens, et nous avons essayé de réaliser des travaux qui puissent concerner ces deux
communautés.

Durant ma thése au Centre de Mathématiques Appliquées de I’Ecole Polytechnique, sous la
direction de Sylvie Méléard, je me suis intéressée a la modélisation et 1’étude probabiliste de
I’évolution génétique des populations a reproduction sexuée. J’ai ensuite occupé pendant un an
un poste de Lectrice Hadamard, au Laboratoire de Mathématiques d’Orsay. Durant cette année
j’ai eu la chance immense de découvrir un domaine et une communauté complétement différents,
en travaillant avec Christophe Giraud notamment sur la combinaison de jeux de données scien-
tifiques et citoyens afin de mieux évaluer 1’état et la dynamique de la biodiversité. Les travaux
que j’al menés par la suite, au Laboratoire de Mathématiques d’Orsay en tant que maitresse de
conférence, puis dans I'unité Mathématiques et Informatique Appliquées de Paris-Saclay (IN-
RAE) a AgroParisTech en tant que professeur junior, ont pour la plupart un lien fort avec I'un
de ces deux domaines de probabilité appliquées a la biologie : I’évolution génétique des popula-



10

tions a reproduction d’une part, et la combinaison de données environnementales, ou biologiques,
d’autre part. Je vais maintenant en présenter une partie, ainsi que les perspectives de recherche
et d’encadrement que j’envisage pour les prochaines années.

Impacts de la reproduction sexuée et de la démographie sur la diversité génétique
La composition génétique d’une population a reproduction sexuée (c’est-a-dire I'ensemble des
génomes de tous les individus qui la composent) est le résultat de processus trés complexes
et qui ne sont pas indépendants les uns des autres. Parmi eux on notera par exemple le choix
d’un partenaire de reproduction et donc la construction progressive d’'une population munie d’un
graphe de parenté, la transmission du génome le long de ce graphe et les mutations ayant lieu lors
de cette transmission, la traduction de ce génome en termes de capacité de survie des individus, et
de reproduction des couples d’individus. Etudier la composition génétique de ces populations est
un probléme difficile et important, qui peut-étre abordé de facons multiples, allant d’approches
trés théoriques & des techniques beaucoup plus appliquées et proches des données.

Durant ma thése je me suis intéressée a la dynamique de la composition génétique d’une po-
pulation & reproduction sexuée et de taille variable, dans laquelle les individus sont caractérisés
par leur génome a un seul locus diploide et bi-allélique ( ( )). J’ai pour cela créé et
étudié des modéles probabilistes individus-centrés, plus précisément des processus de naissance
et mort avec interactions, qui sont caractérisés par un certain nombre de paramétres démogra-
phiques, qui déterminent la reproduction et la mort des individus. J’ai alors montré 'existence
d’échelles lentes-rapides dans la dynamique de ces processus, et étudié leur comportement quasi-
stationnaire.

Par la suite j’ai continué & me passionner pour ce sujet qui est trés riche, mais avec des
approches, des questions, et des collaborateurs différents. Cette partie de mon travail peut se dé-
couper en 3 thématiques : étude de U'interaction entre démographie et diversité génétique, étude
de la composition génétique d’une population biparentale, et étude du roéle de la reproduction
sexuée dans I’évolution génétique des populations. Je me suis penchée sur l'interaction réciproque
entre démographie et diversité génétique dans le cas de populations a reproduction sexuée, d’'une
part avec Sylvie Méléard et Denis Villemonais ( ( )), et d’autre part avec Diala
Abu Awad ( ( )). Dans ( ), nous avons montré que le
comportement quasi-stationnaire de la diversité génétique d’une population est caractérisé par
I'intégrabilité d’un processus de diffusion stochastique de dimension 1, qui est elle-méme assurée
par un critére explicite sur les paramétres démographiques. Dans ( )
nous avons étudié 'impact de ces paramétres démographiques (liés a la notion de traits d’his-
toires de vie, définie par les généticiens des populations pour étudier I’évolution darwinienne des
populations, ( )) sur la vitesse de fixation d’alléles et donc sur la perte de

, b)), la

composition génétique d’une population & reproduction sexuée. Dans cette série de travaux, pré-

diversité génétique. Ensuite, j’ai étudié, avec Yves Le Jan ( (

sentée dans le Chapitre 1 de ce manuscrit, nous étudions la proportion asymptotique du génome
d’une population biparentale, qui provient d’un ancétre donné. Notre travail s’inscrit ainsi dans
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la lignée de 'article ( ) et s’ajoute aux travaux ( );
( ); ( ) qui explorent la structure génétique des populations biparentales
avec des approches trés différentes, intéressantes et complémentaires. Nous prouvons en particu-
lier que dans un modéle de Moran biparental neutre, la contribution asymptotique d’un ancétre
au génome de la population considérée est soit égale a 0 (avec probabilité 1/2; ce qui signifie
que l'ancétre a une descendance non éternelle), soit suit une loi exponentielle de paramétre 1/2
(Théoréme 1.1). En ajoutant de la sélection & ce modéle nous analysons I'impact de la sélection
sur la proportion de génome transmise par un individu. A titre d’exemple, nous montrons que si
une population est initialement constituée de 1% d’individus trés favorisés génétiquement, alors
ils seront en temps long en moyenne & 'origine de 19% du génome de la population (Théorémes
1.2 et 1.3). Enfin, avec Manon Costa, Héléne Leman et Charline Smadi ( ( ,
, )), j’ai étudié 'impact des préférences d’appariement sur la spéciation et la diversité
génétique. Dans ces travaux, menés en partie en collaboration avec les biologistes de 1’évolution
Fabien Laroche et Violaine Llaurens, et présentés dans le Chapitre 2 de ce manuscrit, nous nous
intéressons plus précisément a I'homogamie (le fait pour un individu de se reproduire plus fa-
cilement avec un individu qui lui ressemble) et & 1'hétérogamie. Nous déterminons notamment
les conditions d’émergence de ’homogamie (Théoréme 2.3), comment ’homogamie peut engen-
drer la spéciation (Théoréme 2.7) et la quantité de diversité génétique permise par I’hétérogamie
(Théorémes 2.8 et 2.9). Nos travaux constituent une nouvelle fagon d’étudier mathématiquement
le role des préférences d’appariement dans ’évolution génétique des populations et la spéciation.
En particulier le fait de considérer des modéles stochastiques individu-centrés permet d’étudier
des quantités importantes, comme la probabilité d’invasion d’un mutant homogame dans une
population, déterminée dans le Théoréme 2.3.

Amélioration du suivi de la biodiversité par combinaison de données citoyennes et
scientifiques Le développement et I’étude de modéles probabilistes visant & une meilleure
compréhension des systémes biologiques me passionne. Toutefois, pour que ce travail me paraisse
véritablement pertinent, il est essentiel pour moi d’avoir une connaissance des données et de
concevoir des modéles permettant de les exploiter pour répondre a des questions biologiques.
Durant mon année de post-doctorat au laboratoire de Mathématiques d’Orsay j’ai travaillé avec
Christophe Giraud, Romain Julliard, et Clément Calenge, sur la question de l'exploitation de
données issues de programmes de sciences citoyennes, afin d’améliorer 1’évaluation et le suivi
de la biodiversité. Les programmes de sciences citoyennes, ou sciences participatives, sont mis
en place par des scientifiques, mais utilisent le temps, ’énergie et la bonne volonté des citoyens
afin de récolter des observations. Ils sont en général caractérisés par un protocole d’observation
assez léger, voire inexistant, mais aussi par un trés grand nombre de données récoltées, ce qui
incite a chercher une facon de les calibrer pour les utiliser de fagon pertinente. Dans le cas qui
nous a intéressés nous avions a notre disposition deux jeux de données d’observations d’oiseaux
en Aquitaine : I'un récolté par des professionnels selon un protocole précis (avec notamment
une information du temps passé & observer et la consigne pour les observateurs de rapporter
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toutes leurs observations) et 'un issu d’observations faites par des citoyens, sans contrainte
particuliére. Notre but était, & partir de ces jeux de données, de fournir des cartes d’abondances
relatives d’espéces, c’est-a-dire d’étre capable de comparer le nombre d’individus d’une espéce
donnée, & deux endroits différents de ’espace considéré. Estimer ces abondances relatives est
possible & I'aide du seul jeu de données professionnel, du fait du protocole trés strict qu’il impose.
Néanmoins les estimations auxquelles il conduit sont trés bruitées, car il contient peu de données.
Notre approche a consisté a coupler, au travers d’un modéle probabiliste, ces deux jeux de
données, de facon & bénéficier a la fois de la calibration des données scientifiques et de ’abondance
des données citoyennes, et améliorer ainsi la précision des estimations d’abondances relatives
d’espéces obtenues avec le seul jeu de données professionnel (Théoréme 3.1). Notre approche
est originale : la plupart des travaux visant & calibrer les données issues de programmes de
sciences participatives consistent plutot a essayer de les débiaiser en estimant le temps passé
par les observateurs sur le terrain ou plus grossiérement en remplacant ce temps par le nombre
d’observateurs, ou le nombre d’observations. Ce travail ouvre de nombreuses perspectives, car
cette situation dans laquelle plusieurs jeux de données sont issus d’une méme réalité biologique
est de plus en plus fréquente.

Perspectives Mes recherches actuelles et perspectives de recherche sont développées a la fin
de chaque chapitre. Elles sont centrées sur I’étude de ’évolution génétique et de la dynamique
de populations a reproduction sexuée, mais portent sur des questions et applications biologiques
différentes, abordées avec des approches mathématiques aussi trés variées. J’aimerais notamment
comprendre 'impact de I’hybridation et de la structure des familles sur le génome de populations
a reproduction sexuée. Je cherche par ailleurs & modéliser la dynamique de populations d’insectes
controlées par la technique de l'insecte stérile, et & étudier 'optimisation de cette technique. Je
voudrais enfin estimer la démographie et I'histoire migratoire de populations a partir de données
génétiques, de données de comptages, ou par combinaison de ces différents types de données. Les
applications de ces différentes questions se situent en agronomie, génétique animale, histoire de
I’Homme et santé.
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Chapitre 1

Génétique des populations biparentales

1.1 Introduction

Cette partie de mon travail a été réalisée en collaboration avec Yves Le Jan (Université Paris-
Saclay). Notre objectif était d’étudier la composition génétique des populations a reproduction
sexuée, donc les populations dans lesquelles le génome d’un individu est une fonction aléatoire du
génome de ses deux parents. Cette question de recherche est trés importante, par exemple pour
comprendre I'avantage conféré aux espéces par la reproduction sexuée ( ( )), mais
surtout pour inférer, & partir de données génomiques, I’histoire démographique ainsi que certains
paramétres régissant la dynamique des populations et ’histoire de vie des individus, comme les
paramétres de sélection ou les préférences d’appariement. Cet objectif d’inférence est notamment
a Dorigine du développement et de ’étude des coalescents séquentiellement Markoviens qui sont
des modeéles approchés et trés étudiés, de graphes ancestraux avec recombinaison (

( )). Malgré ces enjeux, la génétique des populations a reproduction sexuée a fait
I’objet de relativement peu d’articles portant sur I’étude de modéles probabilistes exacts, et reste
un domaine & découvrir. On peut néanmoins en distinguer quelques-uns : les deux articles
( ) et ( ) ont une approche "backward in time", au travers de laquelle ils étudient
notamment deux temps en remontant dans le passé d’une population (représentée par un modéle
de Wright-Fisher biparental dans le premier article et par un modéle de Moran biparental dans le
second) : le premier temps au bout duquel il existe dans la population un ancétre commun a tous
les individus de la population présente, et le premier temps au bout duquel tous les ancétres sont
soit ancétre de tous les individus de la population présente, soit ancétre d’aucun individu de la
population présente. Etudier les échelles de temps en génétique des populations est essentiel pour
comprendre la diversité génétique, qui est assurée par ’accumulation de mutations au cours du
temps. L’article ( ) a une approche trés différente : les auteurs donnent, sous
une hypothése de grande taille de population, la loi de la proportion asymptotique de génome
transmise par un ancétre donné dans une population modélisée par un modéle de Wright-Fisher
biparental. Dans ( ), les auteurs modélisent le génome d’un individu par le
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segment [0, 1], et ce génome est transmis, avec recombinaison, par chaque couple de parents a
leur enfant : en cas de recombinaison le génome d’un des deux parents est coupé & une position
uniforme du segment [0, 1] et le génome de 'enfant est alors constitué¢ du début du génome d’un
de ses parents, suivi de la fin du génome de 'autre. Pour chaque position = € [0, 1], la généalogie
d’un échantillon d’individus est alors coalescente, et finit dans un ancétre commun & tous les
individus. Les auteurs s’intéressent alors au coloriage de ce segment en fonction de I'identité de
I’ancétre qui a transmis son génome a l’ensemble de la population, & chaque point x du segment
[0,1]. IIs donnent la dynamique et la loi stationnaire de ce coloriage. L’article
( ) présente une approche plus proche de la génétique quantitative : les auteurs

s’intéressent & la transmission des éléments transposables au travers de la reproduction sexuée.
Chaque individu porte un certain nombre d’éléments génétiques transposables, et un enfant
hérite d’une fonction aléatoire du nombre d’éléments total portés par ses parents. Les auteurs
montrent 'existence d’une échelle lente rapide dans ce modéle et caractérisent la distribution
stationnaire de la fréquence d’individus portant un certain nombre d’éléments transposables.
Enfin, larticle ( ) étudie I'impact de I'autofécondation dans le génome des
populations & reproduction sexuée et démontre 'importance de prendre en compte le pédigrée
dans cette analyse.

Notre travail s’inscrit dans la lignée de ’article ( ), dans le sens o notre
approche consiste & étudier la contribution asymptotique d’un ancétre au génome d’une popula-
tion.

1.2 Modéle

Base du modéle Nous nous plagons dans le cadre ot la population considérée suit un modéle
de Moran biparental avec sélection. Plus précisément, notons N le nombre d’individus dans la
population, qui sera constant et sera un paramétre clé du modéle (le seul, dans le cas le plus
simple). Les individus sont numérotés a tout instant par i € I = {1,2,..., N}. La population évo-
lue a des pas de temps discrets, indicés par n € N. Plus précisément a chaque pas de temps, deux
individus sont choisis uniformément au hasard, ils se reproduisent, et leur descendant remplace
un troisiéme individu choisi indépendamment (mais pas nécessairement uniformément, plus de
détails seront donnés juste aprés) dans la population. Notons qu’un individu peut éventuellement
se reproduire avec lui-méme mais cet événement n’a lieu qu’avec probabilité 1/N a chaque pas
de temps. Sous cette dynamique la taille de population est constante, et a chaque pas de temps,
au maximum 4 individus sont impliqués dans les changements de la population. Le fait que la
composition de la population évolue trés peu a chaque pas de temps nous permettra d’obtenir des
résultats plus forts que ceux obtenus dans ( ) pour le modéle de Wright-Fisher,
dans lequel l'intégralité de la population est remplacée a chaque étape. Notons respectivement
Un, Tn, kn € I les positions de la mére, du pére, et de l'individu qui meurt au temps n. Les
individus mére et pére ont pour I'instant des roles parfaitement symétriques.
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Ajoutons de la sélection Le modéle présenté précédemment est dit neutre lorsque 'individu
qui meurt au temps n est choisi uniformément dans la population. Une partie de notre travail, no-
tamment les résultats les plus forts que nous obtenons, portent sur ce cas neutre. Néanmoins nous
avons aussi étudié une version plus générale de ce modéle, qui permet de prendre en compte et
d’étudier 'impact de la sélection génétique sur la composition génétique d’une population. Pour
cela supposons maintenant que les individus peuvent étre de deux types : avantagé ou non avan-
tagé, et que cet avantage est conféré par une mutation qui se transmet de fagcon Mendélienne
et haploide. Plus simplement cela veut dire que lors d’une reproduction, 'un des deux parents,
choisi uniformément au hasard, transmettra son statut d’avantagé ou non avantagé, a ’enfant
produit. Comme les deux parents sont choisis uniformément au hasard dans la population, on
supposera par convention que c’est la mére qui transmet son statut d’avantage. Enfin, cet avan-
tage se manifeste au niveau de la mort des individus : on associe aux individus désavantagés un
poids 1 + s (s € Ry U{+00}) et aux individus avantagés un poids 1, et au moment de choisir un
individu qui meurt, chaque individu est choisi avec une probabilité proportionnelle a son poids.
Ainsi, tant que le nombre d’avantagés est différent de 0 ou de N, un individu désavantagé a une
probabilité de mourir 1 + s fois plus élevée qu'un individu avantagé. Notons que lorsque s est
infini, cela signifie que l'individu qui meurt est choisi uniformément parmi les individus désavan-
tagés. Notons aussi que lorsque s = 0 le modéle est neutre, c’est-a-dire que tous les individus
sont équivalents.

Transmission du génome et poids génétique des ancétres Le processus stochastique
({tin, Tn}, Kn)nen se traduit par un graphe de parenté, appelé pédigrée et noté G, qui est le
support de la transmission génétique. Plus précisément, comme représenté dans la Figure 1.1, G
est construit sur I XxZ en tragant a chaque temps ¢t € Z, deux fléches orientées partant de (ky, t+
1) et allant vers (¢, t) et (ug, t), et N—1 fleches orientées de (z,t+1) a (z,t) pour tout x € I'\{r:}.
On notera {G,,n € Z,} la filtration associée au processus stochastique ({fn,n}, kn)nez, -

X"

i N %
j& Time
ARy

FI1GURE 1.1 — Ce graphe représente le pédigrée d’une population de 8 individus, durant 7 pas de

temps. Le chemin rouge représente la généalogie d’un géne, qui est la réalisation d’une marche
aléatoire sur ce graphe, en remontant le temps.
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Notons que le pédigrée n’est pas indépendant du statut d’avantage des individus et ne donne pas
non plus cette information, qui est donnée par le processus stochastique complet (fin, T, Kn)neN
qui donne toute la dynamique de la population, a condition que les positions des individus
initialement avantagés soient aussi connues. La Figure 1.2 donne un exemple de pédigrée dans
lequel les individus avantagés sont en plus représentés en rouge.

n=0 [
n=1

Time
n=9 v

1 1/2 1/2 1/4 3/8

FIGURE 1.2 — Cette figure représente simultanément le pédigrée G et I’ensemble des individus
avantagés (en rouge) durant 10 pas de temps, pour une population de 5 individus. Les nombres en
bas donnent la probabilité pour qu’un géne échantillonné dans chacun des individus proviennent
initialement de I'unique individu avantagé. Dans cet exemple le poids génétique de cet individu
initialement avantagé vaut 21/8 =1+1/2+1/2+1/4+ 3/8.

Une fois que ce graphe est créé, si un géne (morceau de génome supposé insécable) est
échantillonné dans un individu de la population, alors ce géne provient nécessairement de l'un de
ses deux parents, choisi uniformément au hasard. La Figure 1.1 montre en rouge la généalogie,
c’est-a-dire 'histoire d’un géne échantillonné au temps n dans U'individu 5. A ce stade il serait
naturel de se pencher sur la question de la recombinaison, et de son impact sur le génome des
individus. C’est une question difficile, qui est notamment abordée dans ( ).
De notre c6té nous supposons plus simplement que le génome est constitué d’une infinité de
loci (un locus est un emplacement du génome), qui se comportent de fagon indépendante sur
le pédigrée. Autrement dit, si 'on échantillonne cette fois deux génes dans un individu, alors
comme précédemment chacun de ces génes provient de I'un des deux parents de l'individu, et
I’on suppose ici ces provenances sont indépendantes, sachant ces deux parents. La généalogie de
k génes échantillonnés, c’est-a-dire I’histoire de k morceaux de génomes est donc un ensemble de
k marches aléatoires sur le pédigrée, indépendantes sachant ce pédigrée. Sous cette hypotheése,
le pédigrée étant donné, la probabilité pour qu'un géne échantillonné uniformément dans la
population provienne d’un ancétre donné peut étre vue comme la proportion de génome issue de
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cet ancétre. C’est la quantité qui va nous intéresser. Plus formellement, notons (X lin) ,n—k)o<k<n
la généalogie d'un géne (c¢’est-a-dire le numéro de 'individu dans lequel 'ancétre de ce géne se
trouvait a chaque temps t = n — k < n, dont un exemple est donné en Figure 1.1). Le processus
(X ,gn), n — k)o<k<n est une marche aléatoire sur le graphe G et I’on considére

Wa(i,5) = P(X® = 51X = ,Gn) (1.1)

La quantité W, (7,j) modélise donc la proportion de génome de l'individu ¢ qui provient de
I’ancétre j, ou encore la contribution de ’ancétre j au génome de 'individu i. De la méme fagon,

la quantité
N

Mo (5) = Wi, ) (1.2)
i=1
est égale & N fois la probabilité pour qu'un géne échantillonné uniformément au temps n pro-
vienne de 'ancétre j, au temps 0. On appellera par la suite cette quantité le poids génétique de
I’ancétre j.

1.3 Reésultats

Cas neutre Notre premier résultat porte sur le cas neutre, pour lequel s = 0. Le premier
point du théoréme dit que la contribution génétique d’un ancétre donné est asymptotiquement
la méme dans tout individu vivant au temps présent. Le second point du théoréme donne une loi
explicite pour cette contribution asymptotique, lorsque la taille de population tend vers l'infini.

Théoréme 1.1. (i) Pour tout j € I, il existe une variable aléatoire A(j) telle que pour tout
1 €1,
Wa(i,j) —— A(G)  ps.

n—o0

En particulier,
Mn(j) —— Mos(j) = NA(j) p-s.

n—oo

(ii) Pour tout | < N et tous ki, ...,k € Z,

!

E (Mfgu)...Mg(Z)) —— 2" 'kt (1.3)
N—o0 1

De fagcon équivalente, la contribution génétique asymptotique d’un ancétre, est égale a 0

avec probabilité 1/2 (ce qui signifie que l'ancétre en question a une descendance qui n’est

pas éternelle), et sinon, suit une loi exponentielle de paramétre 1/2.

Quelques éléments de preuve de ce théoréme et des résultats qui suivront (Théorémes 1.2,
1.3, et Proposition 1.4) sont donnés dans la Section 1.4. Les deux points du théoréme sont
illustrés dans la Figure 1.3. Pour cette figure nous lancons une seule simulation du modéle
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1 100 T 10000

F1GURE 1.3 — Nous langons une seule simulation du modeéle de Moran biparental neutre, pour
N = 100 (a gauche) ou N = 10000 (a droite) : en bleu nous tracons les poids des ancétres
triés dans l'ordre croissant, aprés 100000 pas de temps. En rouge nous donnons la fonction
T —1s /2 X 2In(2(1 — x/N)).

de Moran biparental neutre, pour une durée assez longue. Nous obtenons que les poids des
individus, triés dans l'ordre croissant, se stabilisent vers une distribution; cette distribution
converge vers 'inverse généralisée de la fonction de répartition de la variable aléatoire qui vaut 0
avec probabilité 1/2 et sinon suit une loi exponentielle de paramétre 1/2. Rappelons que dans le
cas monoparental le comportement asymptotique du poids d’un ancétre est trés différent : pour
toute taille de population N, le poids asymptotique d'un ancétre est égal & 0 avec probabilité
(N — 1)/N et sinon vaut N ; il existe un unique ancétre commun a tous. Le Théoréme 1.1
montre donc un comportement beaucoup plus complexe de la transmission génétique dans les
populations a reproduction sexuée.

Notons que le poids asymptotique d’un ancétre a une loi différente dans le modéle de Mo-
ran biparental et dans le modéle de Wright-Fisher biparental, étudié dans I’article
( ). En particulier dans ( ), les auteurs obtiennent que 80% des ancétres ont
une descendance éternelle. Cette différence est intéressante car ces modéles sont souvent consi-
dérés comme étant équivalents a changement d’échelle de temps prés (pour ces deux modéles la
dynamique de la proportion d’un alléle donné dans la population converge, une fois correctement
renormalisée, vers une diffusion de Wright-Fisher). La différence que nous obtenons est liée au
fait que lorsque la taille de population N est trés grande, pour le modéle de Wright-Fisher bipa-
rental la loi du nombre d’enfants d’un individu est proche d’une loi de Poisson tandis que pour le
modéle de Moran biparental elle est proche d’une loi géométrique & valeurs dans N (d’espérance
2 dans les deux cas). Ces deux distributions sont différentes et notamment la loi géométrique a
une probabilité de valoir 0 beaucoup plus élevée (Figure 1.4).
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FIGURE 1.4 — Histogrammes de la loi géométrique (a gauche) et de la loi de Poisson (a droite)
d’espérance 2.

Sélection infinie Revenons maintenant au cas avec sélection décrit dans la Section 1.2 et no-
tons ), 'ensemble des individus avantagés au temps n et Y,, son cardinal, c’est-a-dire le nombre
d’individus avantagés au temps n. Nous nous demandons dans ce cas, de facon assez naturelle,
quelle est la probabilité pour qu’un géne échantillonné dans la population provienne des Y indi-
vidus initialement avantagés. Connaitre cette probabilité permet de quantifier I’avantage conféré
par une mutation avantageuse, en termes de quantité de génome transmis. En particulier on sait
que cette probabilité sachant le pédigrée est une variable aléatoire (en tant que fonction détermi-
niste du pédigrée qui est aléatoire), dont I’espérance vaut Yy/N dans le cas neutre. Nous allons
donc maintenant chercher & calculer cette espérance dans le cas avec sélection. Concentrons-nous
pour linstant sur le cas extréme ou la force de la sélection est infinie (s = +00), et la popula-
tion est initialement composée d’un seul individu avantagé. Le fait que s soit infini signifie qu’a
chaque pas de temps, I'individu choisi pour mourir est choisi uniformément parmi les individus
désavantagés. Dans ce cas, nous avons Y, 1 € {Y,,Y, + 1} pour tout n, donc le nombre d’indi-
vidus avantagés croit avec le temps. Notons Ty le temps d’atteinte de N par (Y),),en, qui est
fini presque stiirement. Alors le théoréme suivant donne l'ordre de grandeur de la contribution
génétique de l'individu initialement avantagé, une fois que tous les individus sont avantagés,
c’est-a-dire au temps 1. Notons que cette contribution continuera & évoluer aprés le temps T,
de fagon stochastique, mais son espérance restera la méme car le modéle sera devenu neutre.

Théoréme 1.2. Le poids Mty (1) de Uindividu initialement avantagé (numéroté 1, par conven-
tion) au temps T satisfait

Ce théoréme permet en quelque sorte de quantifier 'impact maximal de la sélection : en ’ab-
sence de sélection, la probabilité pour qu'un géne échantillonné uniformément dans la population
provienne d’un ancétre donné est égale a 1/N. Lorsque la sélection est extrémement forte, cette
probabilité devient de 'ordre de ﬁ pour 'individu initialement avantagé (elle reste donc en
revanche de 'ordre de 1/N pour les autres individus). L’étude de la loi de ce poids asymptotique
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est un projet en cours.

Sélection finie Lorsque la sélection n’est pas infinie, le nombre d’individus avantagés peut finir
par toucher 0, avec une probabilité non nulle. Néanmoins cette probabilité tend vers 0 lorsque
la taille de population tend vers l'infini et que la proportion d’individus avantagés est proche
d’une constante positive a € (0,1). Nous nous sommes pour l'instant placés dans ce contexte.
En travaillant sur le cas de sélection infinie nous avons compris que deux quantités importantes

ont un comportement plutét simple. Définissons pour tout temps n € N,

U= > Wa(l,I), et Vu=>_ > Wu(l1l).

leYn l'€Yo ¢V I'€Xo

La quantité U,, € [0, N] (resp. V,, € [0, N]) représente le poids génétique des individus initialement
avantagés dans les individus avantagés (resp. désavantagés) au temps n. Tant que Y, ¢ {0, N},
si I'on note U(A) la loi uniforme sur un ensemble discret A, on a notamment

Up, n n
v = ]P’(Xﬁb ) € y0|X(g ) ~U(Vn),Gn),
et v
_Yn (n) (n)
N_Y, ]P’(Xn €y0|X0 Z/[(I\yn)agn)
Les deux quantités
UTN UTN VTO VTO
T P v e [
N Twsee Ty Hnv<ee €0 TN Hb<oo = Ty s

peuvent donc étre interprétées comme la contribution génétique des individus avantagés dans la
population une fois que la mutation s’est fixée ou a disparu, respectivement. Elles donnent en
effet la probabilité pour qu’un géne échantillonné uniformément dans la population devenue mo-
nomorphe, provienne d’un des individus initialement avantagés. La Figure 1.1 donne un exemple
de telle probabilité, lorsque I'on part d’un seul individu avantagé : dans cette figure au bout de 9
pas de temps tous les individus sont avantagés, le poids de 'individu initialement avantagé vaut
21/8, donc la probabilité pour qu'un géne échantillonné uniformément au temps 9 provienne
de cet individu vaut 21/8 x 1/N = 21/40. Pour étudier cette quantité limite Ur, /N qui nous
intéresse nous étudions le processus stochastique de dimension 3,

Y, U, V,
(ZH)TLEN = (77»’ VR ) .
N N N neN

Ce processus n’est pas Markovien, néanmoins lorsque la taille de population tend vers I'infini et
la proportion initiale d’individus avantagés tend vers a, sa dynamique peut étre approchée par
celle d’un systéme dynamique dont la solution est explicite. C’est I'objet du prochain théoréme.
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Théoréme 1.3. Soit a € (0,1). Si la proportion initiale d’individus avantagés % tend vers a en
probabilité quand N tend vers l'infini, alors pour tout ¢ € Ry,

sup [|[Z|n¢y — 2l — 0 (1.4)
0<t<c N—o0

en probabilité, ot (z¢)t>0 = (Ye, ut, Vt)t>0 satisfait

a1+s ml—i—s
ye = F~1 (1_aexp(st)> ou F(x) = 2
1+s 1 1
a2 (1 —y)2s /yf (1—2x)2 [1 1 1
= —_— | =+ — d
Ut yt(l—a)i 1%3 + ., x12-;;s 2 + 251 — 2 €T (1.5)
Yt
1+s 1
a 2s ut (1 — x)Ts 1 1 1
=(1-— -+ — dx.

Ce théoréme donne la dynamique limite du triplet (Z,)nen, et est en partie illustré dans
la Figure 1.5. Notons que si la proportion initiale d’individus avantagés tend vers a, alors la
probabilité pour que la mutation avantageuse se fixe, c¢’est-a-dire pour que (Y, )nen finisse par
toucher N, tend vers 1. Notre résultat suivant étend alors le Théoréme 1.3 jusqu’au temps
d’intérét T (qui tend vers l'infini lorsque N tend vers l'infini), pour l'espérance de %, c’est-a-
dire la probabilité pour qu'un géne échantillonné dans la population provienne d’un des individus
initialement avantagés.

Proposition 1.4. Soit a € (0,1). Si la proportion initiale d’individus avantagés % tend vers a
en probabilité quand N tend vers l'infini, alors

Ur a'ss ll—w2= 1 1 1
E(2vq — . du | .
< N TN<OO> N—oo (l—a)Tls /a u [24_251_“} !

Notons que les deux processus stochastiques (%)nez L et (%)nEZ . continuent a évoluer aprés

le temps inf(7Tp, Ty) (leur dynamique sera détaillée dans la Section 1.4 donnant les éléments de
preuves des résultats). Néanmoins leurs espérances respectives deviennent constantes aprés ce
temps, car la population devient neutre. La Proposition 1.4 donne donc, sous une hypothése
de grande taille de population et proportion initiale macroscopique d’individus avantagés, 1’es-
pérance de la contribution génétique de ces individus avantagés (ou encore la probabilité pour
qu'un géne échantillonné au temps présent provienne de I'un de ces individus). Lorsque la sélec-
tion est trés forte (s — oo), la Proposition 1.4 nous dit que si la proportion initiale d’avantagés
vaut a, alors ces individus avantagés seront en temps long a l'origine d’une proportion 2v/a — a
du génome de la population, en moyenne. A titre d’exemple, si initialement la population est
constitué de 1% d’individus fortement avantagés, alors ces individus finiront par étre respon-
sables de 19% du génome de la population. Ce dernier résultat est illustré dans la Figure 1.5.
La Figure 1.6 montre aussi I'impact maximal de la sélection, en tragant simplement les fonctions
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Proportion
Asymptotic weights

these asymptotic weights

Time N : : - ’ Initial number of advantaged individuals

FIGURE 1.5 — Gauche : Pour N = 1000, s = 10 (sélection trés forte), et a = 1%, 20 réalisations
de la dynamique jointe de la proportion d’individus avantagés (en rouge) et de la contribution
génétique des individus initialement avantagés(en bleu). Droite : Pour différentes valeurs de
la proportion initiale d’individus avantagés et s = 10 encore, 20 valeurs de la contribution
génétique des individus initialement avantagés (points bleus), leur moyenne empirique (en jaune),
Papproximation théorique de leur espérance (en bleu), ainsi que les approximation théorique de
leur espérance pour s = 0 (en violet) et s infini (en rouge), une fois que la population est devenue
monomorphe.

x — x et x — 2y/r —x qui donnent les proportions initiales et finales de génome provenant d’une
proportion x d’individus initialement trés fortement avantagés. Pour finir, quelques éléments de
comparaisons sont donnés dans la partie perspectives de ce chapitre (Section 1.5).

Pour finir, en partant d’une proportion a d’individus avantagés on perd le caractére aléatoire
du poids asymptotique des individus avantagés, qui était bien caractérisé dans le cas neutre, par
le Théoréme 1.1. En particulier le poids des avantagés ne peut plus s’annuler en temps long alors
qu'un seul individu a, dans le cas neutre, une probabilité égale & 1/2 d’avoir une descendance
non éternelle. La proposition suivante donne la probabilité pour qu’un seul individu initialement
avantagé (un mutant) ne contribue pas, en temps long a la population.

Proposition 1.5. Supposons ici que le nombre initial d’avantagés est égal a 1 (Yo = 1). Alors
la probabilité pour que le poids asymptotique de l’avantagé initial soit nul converge, lorsque N

tend vers linfini, vers
S

(1+s)?

[\l [9%)
—
-
»

|
[

Nous retrouvons bien sir la valeur de 1/2 obtenue dans le Théoréme 1.1, dans le cas ou
s = 0, et nous remarquons aussi que cette probabilité tend vers 0 lorsque s tend vers 'infini, ce
qui est naturel. La Figure 1.7 donne la densité du poids d’un individu initialement trés fortement
avantagé, aprés un grand nombre de pas de temps. La proposition 1.5 renseigne sur la probabilité
de I'atome en 0 de cette distribution. Le reste de la distribution dépend du nombre de pas de
temps dans la simulation et fait ’objet de travaux en cours.
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FIGURE 1.6 — Nous tragons les deux courbes z — = (en bleu) et  — 2y/z — x (en orange). La
différence entre les deux courbes montre I'impact maximal de la sélection, c’est-a-dire la différence
entre les proportions initiales et finales de génome provenant d’une proportion x d’individus
initialement trés avantagés.

FIGURE 1.7 — Cette figure donne la densité du poids d'un ancétre mutant fortement avantagé,
pour N = 10000 et s = 30 (sélection trés forte), au bout d’un temps long.
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Bilan des résultats Nous avons défini un modéle de Moran biparental avec sélection et nous
étudions pour ce modéle la contribution génétique asymptotique d’un individu donné, & 'en-
semble de la population, c’est-a-dire la proportion du génome de la population qui provient de
cet ancétre, ou encore la probabilité pour qu'un géne échantillonné au temps présent provienne
de cet ancétre. Dans le cas le plus simple, c’est-a-dire en ’absence de sélection, nous montrons
que cette probabilité, multipliée par N, converge en loi lorsque la taille de population N tend
vers l'infini, vers une variable aléatoire dont la loi est explicite : elle vaut 0 avec probabilité
1/2 et sinon suit une loi exponentielle de paramétre 1/2. Dans un cas de sélection infinie le
nombre d’avantagés croit avec le temps, et nous montrons que ’espérance de la proportion de
génome transmise & la population par un unique individu initialement avantagé, est de l'ordre
de ﬁ (contre 1/N dans le cas neutre). Dans le cas le plus général de sélection finie, le nombre
d’avantagés ne croit plus avec le temps, mais & condition de supposer que la proportion initiale
d’avantagés, a, est strictement positive, nous prouvons que ’espérance de la proportion de gé-
nome transmise & la population par ’ensemble des individus initialement avantagés converge
lorsque la taille de population N tend vers I'infini, vers

a'ss ll—w2= 1 1 1
T — = |5t | du
(1—0/)23 a U 2s 2 251 u

(contre a dans le cas neutre). Lorsque s tend vers l'infini, cette quantité tend vers 2/a — a. Cette

quantification de I'impact de la sélection sur la proportion de génome transmise est illustré dans
la Figure 1.5 (figure de droite).

1.4 Eléments de preuves

Eléments de preuve du Théoréme 1.1

Equation stationnaire pour déterminer la loi limite Pour démontrer le Théoréme 1.1
nous commencons par trouver la loi asymptotique du poids d’un ancétre. En effet, lorsque N tend
vers l'infini, cette loi doit satisfaire une équation stationnaire qui peut étre résolue (cette station-
narité sera perdue dans le cas avec sélection). Plus précisément notons h(\) = E(exp(—AM(1)))
la transformée de Laplace du poids asymptotique de I'individu 1 (qui ne dépend pas du numéro
de cet individu, puisque I'on se place dans le cas neutre pour ce premier théoréme). En supposant
(sans le démontrer dans un premier temps) I'indépendance des poids asymptotiques des ancétres,
nous trouvons que cette transformée de Laplace doit satisfaire ’équation

h(A) = % + gh (;) h()).

En cherchant une solution a cette équation sous la forme (1 + aX)/(1 + bA) nous obtenons que
ce poids asymptotique a une loi simple : il est soit égal & 0 avec probabilité 1/2, soit suit une loi
exponentielle de paramétre 1/2.
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Marches aléatoires indépendantes sur le pédigrée Ce premier élément de preuve nous
permet de déterminer les moments asymptotiques donnés dans le terme de droite de ’Equation
(1.3). La suite de la preuve du Théoréme consiste alors notamment & prouver la convergence des
moments
E (Mfg (1)...M§<§(l))

vers ces valeurs asymptotiques lorsque la taille de population tend vers I'infini. Pour cela, nous
posons k = Zé’:l k;, et nous introduisons k& marches aléatoires indépendantes sur le pédigrée G,
qui partent de positions uniformes et indépendantes sur I au temps n et remontent le temps :
(X.(l’n),n—i)ign, (X.(Z’n),n—i)ign, s (X.(k’n)7 n—1i);<n. Alors par définition de M,,(j) (Equations

K3 3 3

(1.1) et (1.2)), pour tous k1, ke, ...,k € Z4 tels que 2221 kj =k, on a

k1 K — Nk (In) —  _x(kin)
E (Mn (1)..M; (l)) NPP(X,, N 1,...,
Xék1+...+sz1+1,n) = x(kittkn) ).

En faisant tendre n vers l'infini et en notant vy la loi stationnaire de la chaine de Markov

(X,(@Ln),XT(LQ’n), . Xﬁk’n)> N qui est irréductible et apériodique, & valeurs dans I¥, on a alors
ne

que pour tous ki, ko, ..., k; € Z tels que Zé-:l k; =k,
E (Mfgu)...Mgg(z)) = Nfuna(1, 01,2000, 2 ol 1)

ou dans le terme de droite, le nombre j € {1,2,...,1} est répété k; fois. Il reste alors & prouver

que
!
N* Ly 1,2,0002, 000,001 ki1, 1.
VN,k()7))))777)m1_‘[ 7 (6>
1=
La loi stationnaire vy de (Xfll’n), e X,S’“’”))%N est I'unique mesure de probabilité solution de
I’équation
vk = vy QM) (1.7)
ot QUNVF) est la matrice de transition de la chaine de Markov (X,(LI’”’), ey X,(@k’”))neN. Nous cher-

chons donc & montrer d’une part que pour tout z € I*, vy (x) est équivalent & C(z)N~F, et
d’autre part que C(z) a la forme appropriée, cest-a-dire que C(z) = [[X, 25®) on K;(z) est le
nombre d’occurrences du nombre ¢ dans le vecteur x. Nous montrons ces deux points I'un aprés
I'autre.

Projection Le premier point est démontré en introduisant une projection assez naturelle (nous
verrons pourquoi juste aprés), notée (Yn(k))neN, de la chaine de Markov (Xfll’n), ...,X,(Zk’n))neN,
sur un sous-espace de I¥. Plus précisément, pour tout = = (z1, ..., xp) €1 k définissons la configu-
ration associée o x, comme 'ensemble {x} = {k1, ko, ..., k;} des nombres de répétitions de chaque
élément de I présent dans z. Le nombre [, aussi noté L({z}), est appelé la taille de la configuration
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{x}. Par exemple, si N >4, k=4 et et z = (3,1,4,4) alors {z} = {1,1,2} et donc L({z}) = 3.
Nous posons alors pour tout n > 0, Yék) la configuration associée a (an’n yeeey Xny ’n)). Cette pro-
jection est naturelle du fait de 'invariance de la loi de la chaine de Markov (XT(LI’"), ey X,S’“’”))neN
d’une part par changement de numérotation des N sites et d’autre part par changement de nu-
mérotation des k particules. Grace a cette invariance, la projection (Yn(k))neN est en effet encore

une chaine de Markov, et

VN k() ~

k
vnvae({2}) Ty k!
N k} x [ nsts (1.8)
e

ot vy r({z}) = limy 00 IP)(Yn(k) = {z}) est la probabilité asymptotique que la chaine de Markov

(X,(ll’n), e XT(Zk’n))neN soit dans la configuration {z}.

Distribution stationnaire de la chaine de Markov projetée La fin de la preuve consiste
a étudier cette nouvelle quantité vy i ({z}). La chaine de Markov (YTE’“))%N prend ses valeurs

dans ’espace
l

Sp={y = {k1, ... i}k € NV}, Y ki = k}
i=1

qui ne dépend plus de N. A chaque pas de temps, la chaine de Markov (Y,gk))neN peut, partant
de l'état {kq, ..., k;}, soit rester dans le méme point, soit sauter dans une autre configuration, qui
aura pour taille [ —1 (sil > 2), [, oul+1 (sil < k—1). Les probabilités de transition d'un état a
I’autre sont d’un ordre de grandeur qui dépend de la différence de taille entre les configurations
initiale et finale, comme représenté dans la Figure 1.8. En particulier la probabilité pour que la
taille de configuration diminue ou reste sur place est de I'ordre de C'//N? oit C dépend de 1’état
de départ, tandis que la probabilité pour que la taille de configuration augmente est d’ordre
C/N ou C dépend de 'état de départ (une fagon d’interpréter ce résultat est de remarquer que
lorsque la taille de population est grande, les marches aléatoires sur le pédigrée ont tendance a
se trouver sur des sites différents : elles coalescent & un taux beaucoup plus faible qu’elles ne se
séparent). Notre preuve s’appuie pour finir sur la caractérisation des distributions stationnaires
donnée dans ( ). Plus précisément, pour toute configuration y € Sj introduisons
Iensemble G(y) des arbres couvrants orientés enracinés et dirigés vers y, qui sont inclus dans le
graphe de transition de Y*). Pour tout arbre orienté g € G(y), définissons son poids 7(g) comme
le produit des probabilités de ses arétes, pour la chaine de Markov Y *). Alors d’apreés

( ), la distribution stationnaire de la chaine de Markov Y %) est telle que pour tout y € S,

_ Yecwn ™)
Zy’ESk ZQ’EG(y’) (g')

Maintenant d’apreés les équivalents des probabilités de transition évoqués précédemment, la pro-

vN k() (1.9)

babilité 7(g) d’un arbre couvrant orienté g pointé vers y est d’ordre au maximum

c(T) 1 B c(T) 110
N2(k—1) N#Se—1—(k—1)  N#Sk—1+(k—1)’ (1.10)
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Sk A-@'(ATL)
o] L()- K
ang‘ $2.4,...AY L(y)= k-4
+ eo-l L(j)zk_z

< L(g,): Pira
e otz
- 4) Ef2 Ly = 8

9(_’1—) + L(3)=B-l

L(n)-_/j_

!

FIGURE 1.8 — Représentation schématique de 1'espace d’états et des probabilités de transition
de la chaine de Markov Y(®). Les états sont rangés de haut en bas en fonction de leur taille :
I’état le plus haut correspond au cas ol les k particules sont dans des états différents, tandis que
I’état le plus bas correspond au cas ou toutes les particules sont dans le méme site.

ou la quantité C(7T) ne dépend pas de N, et il existe un tel arbre ayant effectivement une pro-
babilité de cet ordre. Cet arbre peut étre construit comme représenté dans la Figure 1.9, en
commengant par tracer un chemin strictement descendant (au sens ou la taille de la configura-
tion décroit strictement le long de ce chemin), allant de {1,1,...,1} & y puis en y ajoutant des
arétes strictement ascendantes partant de chaque configuration qui n’est pas sur ce chemin. En
combinant le calcul (1.10) avec I'Equation (1.9), on obtient que

NL({=z})
vnip({x}) ~ C({m})T quand N tend vers U'infini. (1.11)
Revenons enfin & la chaine de Markov qui nous intéresse, (XT(LI’H), ...,X,(Lk’n))neN. Les équations

(1.8) et (1.11) nous donnent que sa loi stationnaire satisfait pour tout = € I* :

K
UNg(x) ~ 5\{[?5}) quand N tend vers l'infini, (1.12)

U
ou K({z}) = C({m})niﬁ mil s H§:1 n;! ne dépend pas de N.
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FIGURE 1.9 — Représentation schématique d’'un arbre couvrant pointé vers la configuration
y = {z}, dont la probabilité est d’ordre maximal.

l

i1 2ki—1k.1. Pour cela, rappelons que la loi stationnaire

Il reste a prouver que K({z}) =[]

UN i de (X,Sl’n), . X,(Lk’n))neN est I'unique mesure de probabilité solution de

g = vn @
En prenant le premier ordre (connu, grace & I'Equation (1.12)) de cette équation, on obtient que
K est solution de

kp—1

K({ki,...k}) x |1 - 2: <;>ku = zz Z <;> (’“ZH > K({k1, ooy — oy kpyi}).

p=1 i=1
(1.13)
Nous concluons la preuve du Théoréme 1.1 en montrant que les solutions de cette équation (qui
peut étre vue comme une équation de récurrence sur la taille des configurations) sont toutes
proportionnelles, puis que pour toute constante C, K ({z}) = C x H§:1 2ki=1k.1 est une solution
de cette équation, et enfin que cette constante C' vaut nécessairement 1 si I’on veut que vy soit
une mesure de probabilité.

Eléments de preuve du Théoréme 1.2 et de la Proposition 1.4

Lorsque I’on ajoute de la sélection, la population est constitué a chaque instant de Y,, individus
avantagés, et ce nombre Y,, est une chaine de Markov. Dans le cas ot la sélection est infinie, cette
chaine de Markov peut a chaque pas de temps soit augmenter de 1, soit rester sur place. Elle
est par ailleurs absorbée en N. Le Théoréme 1.2 donne l'ordre de grandeur de l'espérance du
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poids limite de I'unique individu initialement avantagé, donc ’ordre de grandeur de la probabilité
asymptotique pour qu'un géne échantillonné dans la population provienne de cet individu. Pour
obtenir ce résultat nous supposons que l'individu initialement avantagé est l'individu 1, par
convention, et nous définissons deux quantités assez naturelles, présentées aussi dans la Section
1.3:

Up= > Wal,1), et Vo=> Wu(l1)

ey, l¢yn

Les quantités U, et V,, donnent les poids génétiques de I'individu initialement avantagé, respecti-
vement dans les individus avantagés et les individus désavantagés au temps n. Ces quantités sont
naturelles car elles consistent & regarder le poids de chaque individu dans chaque autre individu,
en les regroupant par statut d’avantage (les individus ayant le méme statut a un instant donné
étant échangeables).

La preuve du Théoréme 1.2 consiste a considérer que la trajectoire de (Y;,)nen est connue, et &
regarder la dynamique de la population, sachant cette réalisation de trajectoire. Concrétement,
en notant (F,,n € N) la filtration associée a la chaine de Markov Y, le modéle défini dans
la Section 1.2 nous donne, lorsque le parameétre de sélection s est infini, que la dynamique de
(Un, Vi)nen satisfait

E(Un+1|Ynt1 = Y, Fn) = Un,

U, 1
IE(Uvn—ﬁ-1|YVn—|—l - Yn + 1afn) - Un + E + ﬁ(Un + Vn)v
Va Va 1U,+V,
EWVpi1|Yni1 =Y, Fn) =V, — 5 )
(V1Yo Fa) =V, NV, 2N-Y,) 2 N
Vi
E n Yn :Yn 11 n) = Vn — 37 ~r
(Vat1[Yn41 +1,F,) =V, N_v,

Rappelons maintenant que la chaine de Markov (Y;,)nen part de 1 puis pour tout & € N* saute de
k & k+ 1 au bout d’un temps qui suit une loi géométrique (& valeurs dans N*) dont le paramétre
dépend de k. Pour tout & € {1,..., N}, notons S, = inf{n € N|Y,, = k}, up = E(Us,), et
v = E(Vs, ). Grace a la dynamique simple de (Y;,)nen, on peut montrer que la suite (finie) de

ug,

satisfait pour tout k € {1,..., N — 1}
Vg

ke{l,..,N}
UL = A [ (1.14)
Vk41 Vg

vecteurs

ou
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(le nombre [ représente ici le nombre de fois ou la chaine de Markov Y est restée au niveau k
avant de passer au niveau k + 1) et

k 1 0
(1) |
N (ﬁv 1_2(le)+2%v>

ki 1+ +35v  an
Lk:< 2k T 2N 2N1 )

N 0 - N
La fin de la preuve consiste & observer alors que si @, = £ et O = Fp
{1,..., N — 1}, alors
. . 2Nk+N+Fk .
U1 — Vg1 = (U, — ) (1.15)

(2N +1)(k+1)
pour tout k+ 1 < N. Ceci nous donne une expression de la différence @y — U comme un produit
que nous pouvons controler :

ol s ()

En observant finalement, grace a 'Equation (1.14) & nouveau, que pour tout k € {1,..., N — 1},
~ Tk -
Ukl = 5N + Uk

nous pouvons alors donner un équivalent de vy et donc de uy lorsque N tend vers l'infini.

La Proposition 1.4 (correspondant au cas ou le paramétre de sélection s est fini) est prouvée
de la méme fagon, sauf que les équations de récurrences obtenues sont différentes, et nous utilisons
aussi des arguments de monotonie des espérances de U,,/Y,, et V,,/(N —Y,,) en fonction de n. Le
détail de la preuve est donné dans la note ( ), Théoréme 2.9).

-

Eléments de preuve du Théoréme 1.3

Le Théoréme 1.3 dit que le processus stochastique Z,, = (Y,,/N, U, /N, V,,/N)nen qui prend
ses valeurs dans [0, 1]3 et est constitué de la proportion d’avantagés dans la population au temps
n, Y, /N, et du poids génétique des avantagés initiaux parmi les avantagés (U, /N) et les désavan-
tagés (V,,/N) de la population, converge vers une unique solution d’un systéme dynamique. Ce
processus (Zy,)nen part de 'état (a, a,0), ot a € (0, 1) est la proportion initiale d’avantagés dans
la population. Pour démontrer le Théoréme 1.3 nous étudions la dynamique de ce processus sto-
chastique. Tout d’abord, comme dans le cas & sélection infinie, le processus stochastique (Y},)nen
est une chaine de Markov, et est méme assez simple : il s’agit du changement de temps aléatoire
d’une marche aléatoire simple sur {0, 1, ..., N}, absorbée en 0 et N. En notant (Hy,)nen la filtra-
tion associée au processus (Z,)neN, on obtient par ailleurs que lorsque la taille de population N
tend vers 'infini,

E(Zuis — Zalt) = a2 +o (3 ).
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ou

o, 1,0) = ( y(1—y)s

y+(1+s)(1-y)

U u—+v U

2T 2 Yy a+s1—y)
voou4wv (1+s)v
375 0V Taraa=y)

pour tout (y,u,v) € [0,1]3. Ce calcul nous indique la forme du systéme dynamique limite, dont
nous déterminons la forme de I'unique solution partant de (a, a, 0) (donnée dans I'Equation (1.5)),
notamment en utilisant la fonction (y;,¢ > 0) comme un changement de temps. Nous obtenons
alors par des techniques assez classiques la convergence du processus stochastique (Z LNt )t<c vers
cette solution jusqu’a tout temps fini c.

1.5 Perspectives

Ce travail de recherche a de nombreuses perspectives et a pour commencer été poursuivi par
les encadrements de Luce Breuil (stage de 3e année de ’'Ecole Polytechnique) d’une part, et
Raphaél Tran Thanh et Juan Mardomingo Sanz (projet de Master 2 Mathématiques pour les
sciences du vivant) d’autre part. Luce Breuil a montré la généralisation du Théoréme 1.1 dans le
cas ot les individus ont m parents, avec m entier naturel fixé supérieur & 2. Elle a aussi étudié
le poids asymptotique des ancétres dans le cas ou les individus peuvent soit se reproduire avec
eux-mémes (auto-fécondation) avec une certaine probabilité p, soit se reproduire avec un autre
individu (allo-fécondation). Pour ce travail de stage Luce a obtenu le prix de stage de la chaire
Modélisation Mathématique et Biodiversité. L’impact de ’auto-fécondation sur la composition
génétique d’une population est aussi étudié dans l'article trés récent ( ),
qui cherche aussi & prendre en compte le role du pédigrée dans cette question, et j’aimerais
comprendre les liens entre les résultats obtenus dans cet article et ceux que nous pouvons fournir
en utilisant ’approche que nous avons empruntée, avec Yves Le Jan d’une part et avec Luce
Breuil d’autre part. Raphaél Tran Thanh et Juan Mardomingo Sanz étudient actuellement une
situation dans laquelle la sélection n’a pas lieu lors de la mort mais lors de la reproduction. Plus
précisément ils supposent que la population est constituée de deux types d’individus, et que le
type d’un individu influence d’une part sa capacité de reproduction, et d’autre part le choix du
type de son partenaire. La question est alors de déterminer dans quelle mesure ces préférences
d’appariement influencent la contribution génétique d’un ancétre donné et aussi de comparer les
forces de la sélection naturelle et de la sélection par préférences d’appariement, ce qui peut étre
fait notamment en prenant un parameétre de sélection infini. Ils obtiennent en effet des résultats
quantitatifs similaires & celui que nous obtenons dans le Théoréme 1.2 : lorsque la sélection
implique que l'un des deux parents est nécessairement du type avantagé, et si la population
est initialement constituée de 1% d’individus avantagés, alors ceux-ci seront en temps long a
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lorigine de 14% du génome total de la population. Je co-encadre ce projet avec Diala Abu Awad
(Université Paris-Saclay) qui est notamment spécialiste du role des systémes de reproduction dans
I’évolution génétique des populations et avec laquelle j’ai déja étudié des modéles probabilistes de
démo-génétique des populations et le réle des traits d’histoire de vie dans 1’évolution génétique
( ( )). Enfin ce sujet de recherche qui repose sur un modéle probabiliste
trés simple peut aussi étre relié a d’autres approches d’étude de la diversité génétique qui sont
beaucoup plus appliquées, notamment les coalescents séquentiellement Markoviens et I’estimation
de paramétres démographiques & partir de données génétiques. Sur des thématiques proches je
vais prochainement co-encadrer, avec Paul Verdu (Musée de 'Homme) et Tristan Mary-Huard
(INRAE), le stage de Master 2 et la thése de Gaspard Dousson-Lys, qui portera sur 'estimation
de paramétres d’histoires migratoires, et 'estimation de paramétres de sélection naturelle, &
partir de données de mesure d’hybridation dans le génome d’individus échantillonnés dans une
population qui résulte des contributions successives de populations sources. Je co-encadre déja
le projet de master 2 de Gaspard Dousson-Lys et Angelo Ciambelli sur des questions liées.
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Chapitre 2

Préférences d’appariement : évolution
et role dans la diversité génétique

Le chapitre précédent portait sur ’étude de la proportion du matériel génétique d’une popu-
lation a reproduction sexuée, qui est issue d’un ancétre donné. Nous avons en particulier étudié
I'impact de la sélection sur cette proportion et j’ai mentionné comme perspective de recherche
I’étude de I'impact des préférences d’appariement sur la composition génétique d’une population
a reproduction sexuée. Cette derniére question rejoint les sujets d’un ensemble de travaux de
recherche que j’ai menés avec Manon Costa (Institut de Mathématiques de Toulouse), Héléne
Leman (INRIA, Lyon) et Charline Smadi (INRAE, Grenoble). Ce chapitre porte sur I’étude, a
partir de modeéles individus centrés, de ’évolution des préférences d’appariement et de leur role
sur la composition génétique des populations.

2.1 Introduction

La sélection naturelle, introduite dans ( ), repose sur les mutations du génome,
qui, de fagon aléatoire, apparaissent et sont transmises par un individu & son descendant. Cer-
taines de ces mutations n’ont pas d’impact sur la survie ou la reproduction de leur porteur,
tandis que d’autres peuvent lui conférer un avantage, ou un désavantage. Les versions mutées du
génome qui donnent un avantage a leur porteur ont alors plus de chances d’étre transmises et
sont ainsi sélectionnées, au travers du comportement des individus ( ( )). Ce mélange
de mutations avantageuses et neutres permet une diversité génétique au sein des populations, et
aussi une adaptation progressive et différenciée des populations a différents environnements. Ces
adaptations différenciées peuvent aller jusqu’a un arrét des flux de génes entre des populations
adaptées & des environnements différents : c’est ce que 'on appelle la spéciation écologique. La
spéciation est un processus évolutif complexe au cours duquel deux groupes d’individus d’une
méme espéce finissent par ne plus pouvoir se reproduire ensemble, et donc finir par appartenir
a deux espéces différentes. La modélisation et I’étude mathématique de la spéciation est un su-
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jet important qui a connu des progrés récents, notamment au travers des travaux
( ); ( ) qui abordent cette question en développant des modéles multi-échelles, allant
du géne a l'espéce, en passant par la protéine et 'individu.

La question principale qui nous a intéressées est celle du réle de la reproduction sexuée et
des préférences d’appariement, d’une part dans la spéciation, et d’autre part dans le maintien
de la diversité génétique des populations. Ces sujets font aussi 'objet de travaux récents réalisés
par des généticiens des populations ( : ). Le point de
départ de notre travail a été I'étude de l'article ( ) étudiant la spéciation
par sélection sexuelle, c’est-a-dire l'arrét de flux de génes entre deux sous-populations, du fait
de préférences d’appariement. Nous nous sommes alors penchées sur deux types de préférences
d’appariement : 'homogamie (le fait pour un individu de préférer se reproduire avec un individu
similaire, ou du méme type) et ’hétérogamie (le fait au contraire de préférer se reproduire avec
un individu de phénotype ou génotype différent). Nous avons étudié trois questions :

e Sous quelles conditions 'homogamie peut représenter un avantage sélectif et finir par enva-
hir une population ( ( ), en collaboration avec Fabien Laroche, d’'INRAE)

e Comment I’homogamie couplée & une structure spatiale peut conduire & de la spéciation
( ( )

e Quel niveau de diversité génétique est généré par I’hétérogamie ( ( )), en
collaboration avec Violaine Llaurens, du Museum National d’Histoire Naturelle).

2.2 Modéle

Dans le chapitre précédent j’ai présenté et étudié un modéle de Moran, qui est un modéle dit
"de population", car les paramétres qui caractérisent ce modéle, en 'occurrence essentiellement
la taille NV de population, s’interprétent & 1’échelle de la population. Dans ce chapitre, nous
considérons des modéles dits "individu-centrés", dont les paramétres définissent le comportement
des individus. Nous utilisons plus spécifiquement des processus de naissance et mort multi-
types avec reproduction sexuée, compétition, et migration. Cette classe de modéles, leurs limites
d’échelle et leurs applications a diverses questions d’écologie ont fait 'objet d’une littérature tres

riche, qui a démarré par la thése de Nicolas Champagnat ( ( )), et les articles
( ) et ( ) qui en sont issus.
Dans ’ensemble de nos articles ( , , ), nous considérons une popula-

tion d’individus haploides (i.e. qui portent une seule version de chaque géne), qui se reproduisent
de fagon sexuée mais hermaphrodite (i.e. sans distinction de sexes male/femelle), comme c’était
déja le cas dans le chapitre précédent. Ils sont caractérisés par leur génome et leur position spa-
tiale, c’est-a-dire que ces deux éléments définissent leur comportement, qui consiste, a différents
instants, & se déplacer sur un espace discret, se reproduire, ou mourir. Le génome d’un individu
est transmis, de fagon aléatoire et avec d’éventuelles mutations, lors de la reproduction. Cette
population est modélisée par un processus de naissance et mort avec migration dont je détaille
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ci-dessous 'espace d’états et les taux.

Espace d’états et changement d’échelle Chaque individu est caractérisé par un génome g €
G et une position (ou un patch) ¢ € Z. Les espaces G et Z sont finis et seront définis ultérieurement
car différents d’un travail & I'autre. Le type d’un individu est donc un élément de £ = G X 7 et
la population est donc caractérisée a tout instant ¢ par un vecteur Ny = (Ny(t))regxz € N¢ qui
donne les nombres respectifs d’individus de chaque type dans la population au temps t.

Ce processus sera considéré sous une hypothése de grande taille de population. Cela signifie
que l'on supposera que le nombre initial d’individus est de 'ordre de K, ot K est un paramétre
d’échelle voué & tendre vers l'infini et dont les différents paramétres du modéle dépendront. Le
paramétre K a aussi une interprétation biologique, qui est la capacité de charge, c’est-a-dire
I’ordre de grandeur du nombre d’individus que 'espace considéré peut supporter. Pour noter la
dépendance en K de notre modéle, I'état de la population au temps ¢ pourra étre noté NtK .

Migration On note p(g,1,j,n) le taux auquel un individu quelconque de génotype g migre de
la position i € Z a la position j € Z lorsque 'ensemble de la population est dans ’état n € N¢.
La fonction p sera supposée Lipschitz en n.

Reproduction et transmission génétique Chaque individu se reproduit a un taux 3, qui
dépend de son génotype g, choisit un partenaire uniformément au hasard parmi les individus
qui ont la méme position que lui (ou vivent dans le méme patch), mais cette rencontre donne
lieu & la naissance (instantanée) d’un individu, avec une probabilité qui dépend du génotype
des deux individus. Cette probabilité peut étre symétrique ou non entre les génomes du premier
parent (celui qui choisit de se reproduire) et du second parent (celui qui est choisi). Le génome
de deux parents est transmis & leur enfant selon les lois de Mendel, en supposant que les loci
sont indépendants, si besoin (Section 2.3.1 seulement). Lorsque la population est dans ’état
n = (Ng;i)geg,icT € N¢, le taux auquel un individu de génotype ¢ apparait & la position i est
donc de la forme :
b(g,i,n) = Z ﬁglnglyi%pgl,g2—>g
91,92€9 !

ol Py, g,—>g €st la probabilité pour qu'un couple d’individus ayant pour génotypes g1, go donne
naissance a un individu de génotype g, et n; = > geg g,i- Notons que cette probabilité inclut & la
fois la transmission Mendélienne du génome (symétriques entre les deux génomes parentaux) et
les éventuelles préférences d’appariement ou incompatibilités génétiques (non symétriques entre
les deux génomes parentaux). En particulier cette probabilité n’est a priori pas symétrique en ¢;
et g2.

Mort Les individus de la population peuvent mourir soit de facon naturelle, soit du fait de la
compétition avec les autres individus présents dans la population. On suppose que le génotype
des individus n’influence pas ce comportement. On note d(g,7,n) = (d+ £n;)ng,; le taux auquel
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un individu quelconque ayant pour génotype g et position i meurt, lorsque ’ensemble de la
population est dans I'état n = (ngi)gegicz € N¢. Le paramétre d € R, représente le taux de
mort naturelle d’un individu, tandis que le parameétre ¢/ K € R représente le taux de compétition
entre deux individus donnés. Rappelons que le nombre d’individus sera de 'ordre de K. Donc
plus les individus sont nombreux, plus la compétition exercée par un individu donné sur un autre
est faible ; en revanche la compétition totale exercée par I’ensemble des individus sur un individu
donné reste toujours du méme ordre.

Notons que les paramétres du modéle ne dépendent jamais de la position de I'individu consi-
déré : on peut voir l'espace comme étant constitué de différents patchs qui sont dits écologi-
quement équivalents. Notre objectif essentiel est d’étudier les comportements qui émergent des
préférences d’appariement contenues dans les parameétres pg, 4,4, et éventuellement des para-

meétres de migration.

Changement d’échelle et convergence Notons (ey;,(g,7) € G X Z) la base canonique de
R€. La dynamique de la population considérée est représentée par la trajectoire d’un processus
stochastique a valeurs dans N¢ :

(NF(t),t > 0) = (Ng5(1), (g9,0) € £, > 0),
dont les transitions sont données, pour tout n € N et (g,4) € &, par :

n — n+egy; au taux  b(g,i,n),
— n-—ey; au taux d(g,i,n),
— n+ey; —ey; autaux p(g,i,4,n).

Comme mentionné précédemment nous allons considérer ce processus (qui sera défini plus
spécifiquement dans chaque sous-section 2.3.1, 2.3.2 et 2.3.3) sous une échelle de grande taille
de population. Plus précisément dans la suite nous supposerons que les tailles initiales de popu-
lations (Nfi(O), (a, 1) € €) sont d’ordre K. Nous allons donc naturellement nous intéresser au
comportement du processus stochastique renormalisé :

NE
K = —
K
Notons (z®")(t),t > 0) = (z((lz;)(t), (o, i) € &)¢>0 'unique solution de I'équation aux dérivées
ordinaires
Mzb(giz(t})—(d—{—cg 2g4(t )z —G—E p(g,i',i,2) — p(g,i,7,2)) (2.1)
dt 2] g, g,% 3y y 3 byl

geg i'eT

qui part de Z(ZO)(O) =2z0¢ Ri. L’unicité provient du fait que le champ de vecteur est localement
Lipschitz et que les solutions n’explosent pas en temps fini ( ). Alors le premier
résultat obtenu (analogue au Théoréme 1.3 du premier chapitre), découle de

( ) (Théoréme 2.1 p. 456) :
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Lemme 2.1. Soit T € R* . Supposons que la suite (Z¥(0), K > 1) converge en probabilité lorsque
K tend vers Uinfini vers un vecteur déterministe z° € (R )¢. Alors

lim sup [|Z%(s) — z(zo)(s)H =0 en probabilité, (2.2)

K—o0 s<T
ot ||.|| est la norme L™ sur RE.

Ce résultat permet, lorsque K est grand, de déterminer le comportement du processus sto-
chastique N* & partir de celui du systéme dynamique (2.1), qui est plus facile & étudier et fait
dans les articles ( ) et ( ) Pobjet d’une partie importante de
notre travail.

2.3 Résultats

2.3.1 Emergence de ’homogamie

Motivation Notre premier but a été d’étudier les conditions d’émergence de I’homogamie. Ce
travail, en collaboration avec Fabien Laroche (INRAE), est détaille dans ( ).
L’homogamie est le fait, pour un individu, de préférer se reproduire avec des individus qui
lui ressemblent. Elle peut aussi prendre la forme d’une meilleure compatibilité génétique entre
individus ayant des génomes proches, ou une meilleure fertilité de ces couples. Ces différentes
formulations peuvent néanmoins se traduire par des modéles mathématiques différents donc il est
important d’étre vigilant sur les mots employés. Dans tous les cas on remarque que I’homogamie
représente un avantage lorsqu’un individu est entouré d’individus comme lui, mais un cott lorsque
son génotype (ou son phénotype) est peu représenté dans la population. L’homogamie est trés
répandue dans le monde vivant ( ( ); ( );

( )) et semble étre un moteur majeur de spéciation ( ( ).

Modéle Notre approche a consisté a définir un modéle d’homogamie le plus simple possible et &
étudier les conditions nécessaires a I'installation & long terme de cette préférence d’appariement.
Dans cette section il n’y a pas de structuration de ’espace : tous les individus vivent dans le
méme patch. On suppose que le comportement des individus est caractérisé par leur génome
a deux loci bi-alléliques indépendants (i.e. qui sont situés sur deux chromosomes différents, ou
suffisamment loin I'un de I'autre sur le génome, pour que leur transmission lors de la méiose se
fasse de fagon indépendante) : un locus qui code pour un phénotype et qui présente deux alléles :
a et A, et un locus qui code pour une préférence d’appariement, portant sur ce premier locus, et
qui présente aussi deux alléles : p et P. L’espace des génomes est ainsi G = {AP, Ap,aP, ap}. Un
individu qui porte l'alléle p est supposé ne pas avoir de préférence d’appariement, alors qu’un
individu qui porte l'alléle P préfére se reproduire avec un individu qui porte le méme alléle que
lui (@ ou A) au premier locus. Plus spécifiquement, on supposera que chaque couple d’individus
se reproduit au méme taux mais que la rencontre entre deux individus produit effectivement un
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Parent 1 | Parent 2 H Taux de reproduction par couple

p -——- bo/n
aP a b_/n

TABLE 2.1 — Taux de reproduction par couple en fonction du génotype de chaque parent, lorsque
la taille de population est égale & n. L’homogamie exercée par le parent 1 porteur de l'alléle P

se traduit mathématiquement par le fait que b_ < by < by.

descendant avec une probabilité qui dépend de 'identité du premier et du second parent (qui
n’exerce pas de préférence). Cela peut se traduire par le tableau de taux de reproduction 2.1,
dans lequel on pourra noter le caractére dissymétrique des deux parents.

L’homogamie exercée par ’alléle P lorsqu’il est porté par le parent 1 se traduit mathémati-
quement par le fait que b_ < by < b4. On pose pour simplifier la suite : by = b, by = b(1 + ()
et b_ = b(1 — [3), ou 'on suppose que b > 0, f1 > 0 et 0 < B < 1. Enfin les génomes des deux
parents sont transmis de fagcon Mendélienne, et en supposant que les deux loci considérés sont
indépendants. Plus mathématiquement, cela veut dire qu’indépendamment pour chaque locus,
I’alléle d’un des deux parents est choisi uniformément et est transmis & 1'unique descendant pro-
duit. L’ensemble de ces hypothéses implique que le taux auquel un individu de génotype ¢ € G
apparait dans la population qui est dans I'état n = (nap, nap, nap, Nap) € N* est donné par

bap(n) =0 -nAP + = ! Binap (nAP + %) B2 (’I’LAP (nap + ) +nAanP>) + Aap]

N

4 2n

L n 2 2n
bap(n) =b|na l (5171.4 nar — b2 (TlA fa +nAPnap)) - AGP] (2.3)
P | rt n g Py 4 2n
bap(n) = b |nap + % <51nap (naP + %) — B2 (naP (nAP + %) + nap%)) - AQZP}
1
n

bap(n) = b | ngp + (ﬁmapn2 — B2 (napn4p + an>) + Aap] ,

ol

AaP = NapNap — NAPNap-

On suppose qu’avant le temps 0 la population n’était constituée que d’individus ayant pour
alléle p au second locus, et donc se reproduisant uniformément, au taux b. Dans ce cas la taille de
population est proche de son équilibre (b — d)K /¢, ot b > d nécessairement (sinon la population
résidente n’est pas viable). Au temps 0 apparait un mutant, de génotype aP, avec a € {A,a}.
On notera @ le complémentaire de o dans {A,a} et on s’intéresse a I’émergence de 'allele P

dans ce contexte.
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La dynamique de cette population est modélisée par un processus de naissance et mort multi-
type avec compétition et reproduction sexuée, noté

(N (t),t > 0) := (NAp(t), N (), Nap (t), Ngy (), = 0)

et qui prend ses valeurs dans N*. Comme mentionné précédemment, nous considérons plutét le
processus changé d’échelle :

K
(ZK(t),t > 0) — <N£l;];(t)’ Nf}j()—(t)’ N;[(];(t)7 N({;};@)’t > 0> ’

de fagon a nous placer sous une hypothése de grande taille de population. Nous supposerons pour
finir que pr(O)/(pr(O) + Z[5(0)) = pa en probabilité, ou encore que

(Z4,(0). Z3(0) , = (pAb_cd,(l—pA)b_d>

K—o0 C

en probabilité, comme mentionné précédemment.

Résultats Nous nous intéressons & l'invasion progressive de 'alléle homogame P qui vient
d’apparaitre, accompagnée de la disparition progressive de l'alléle p. Nos résultats portent sur
trois éléments.

(1) Nous donnons une condition nécessaire et suffisante sur les parameétres de la dynamique de
population et la composition initiale de la population pour que ’alléle P ait une probabilité
strictement positive d’envahir la population (Proposition 2.2).

(ii) Nous caractérisons la probabilité d’invasion de ’alléele P, donnons une approximation de
la durée de cette invasion et ’état final auquel elle conduit la population (Théoréme 2.3).

(747) Dans un cas particulier nous donnons la probabilité d’invasion du mutant homogame (Pro-

position 2.4).

Proposition 2.2 (CNS pour invasion avec probabilité > 0). L’allele P envahit la population
avec probabilité strictement positive si et seulement si :

B1(B2 +2)
2(B1 4 B2)(B1 +2)

La Condition (2.4) donne deux conditions suffisantes (I'une d’entre elle au moins devant

81> B2 ou ,0,4(1 — pA) < (2.4)

étre réalisée) pour que la probabilité d’invasion du mutant soit strictement positive. La premiére
impose que 'avantage conféré a la reproduction homogame soit plus important que le désavantage
conféré a la reproduction hétérogame. La deuxiéme condition est qu’il y ait suffisamment peu de
diversité allélique au premier locus, qui porte les alléles A et a. En particulier, méme si 'avantage
lié & 'homogamie est faible, si la proportion p4 est proche de 0 ou de 1 alors le mutant aura une
probabilité strictement positive d’envahir la population.
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La Condition (2.4) de la Proposition 2.2 découle du fait que le couple formé par les nombres
Nap(t) et Nop(t) est, au début de sa dynamique, approximé par un processus de branchement

g ( BAfl —b 7BAa > (2.5)

dont la matrice moyenne est

/BaA Baa -b

_ b = b
Baa = 5 <1 + (ﬁl + 1)pa - %pa) v Baa = 5 <1 - B;) Pa- (26)

Ce processus de branchement a une probabilité strictement positive de ne pas toucher 0 si et
seulement si la matrice J a une valeur propre strictement positive, ce qui améne a la condition
(2.4). Notons maintenant \ la valeur propre maximale de la matrice J qui est strictement positive
sous la condition (2.4). Le résultat suivant donne, sous cette condition, la durée d’invasion de
l'allele P et I'état final de la population aprés cette invasion. Notons TdD le temps d’extinction
de l'allele P et T, le temps d’atteinte de [b(Hfl)_d — 1, b(1+fl)_d + u] x {0} x {0} x {0} par la
population.

Théoréme 2.3. Supposons que A > 0, que pa € (1/2,1), et que pour un o € {A,a}
(ng(0)7 NgP(O)) = (170)

Alors il existe qo € [0,1) solution d’une équation explicite, et une variable aléatoire B qui suit
une loi de Bernoulli de parametre 1 — q,, telle que pour tout 0 < pu < (b(1+ 1) —d)/c :

_ Ts, NT§ 12
A <an Y, <npy | =B\ S+ 55,01 27)
ot la convergence a lieu en probabilité.
De plus,
N&(TE) b— .
1{T0p<TSH} HK —(0,p4,0,1—pa) 1 e 0 en probabilité, (2.8)
ot || - ||1 est la norme L'.

La preuve de ce théoréme consiste & découper la dynamique du processus stochastique
(Z¥ (t),t > 0) durant I'invasion de I'alléle P en 3 phases : une phase mentionnée précédemment
durant laquelle le processus (Nap(t), Nop(t)):>0 est approximé par un processus de branchement
et le reste de la population est controlé, une phase durant laquelle le processus (ZX(t),t > 0)
est approximé par un systéme dynamique, et une phase d’extinction de 1’alléle résident p et
du génotype aP. Plus de détails sont donnés dans la Section 2.4. La variable aléatoire B de
ce théoréme est 'indicatrice de la survie d’un processus de branchement couplé au processus
(Nap(t), Nop(t))i>0 qui donne la dynamique de la population mutante. Dans le cas ou la condi-
tion (2.4) n’est pas vérifiée, la probabilité d’extinction ¢, du mutant vaut 1, et la convergence



2.3. Résultats 41

énoncée dans I'Equation (2.7) a lieu presque stirement (vers (0,0)). Nous n’avons pas pu, en
général, donner une formule explicite pour la probabilité d’extinction ¢, de la population homo-
game, qui est définie comme solution d’une équation (plus de détails sont donnés dans la Section
2.4 qui rassemble des éléments de preuves pour ce chapitre, cf 'Equation (2.26) pour ce point
précis). Cependant dans le cas particulier ou il n’y a que des individus A ou a dans la population
avant ’arrivée de I’alléle P, nous pouvons donner sa valeur.

Proposition 2.4. Supposons que pa = 1, c’est-a-dire qu’il n’y a que des individus Ap avant
Uarrivée de alléle P dans la population. Dans ce cas

" 1 6—5152+4ﬁ1—ﬁ2_\/(6—5152—1—451—52>2_4(2_52)

25 2+ B 2+ B

Ce résultat est complété par des simulations numeériques (Figure 2.1) qui montrent dans le
cas général oul py est quelconque, une dépendance complexe des probabilités d’extinction (g4, qq)
en les parameétres pa, B1 et Bo, et en particulier une non différentiabilité de ¢4 en fonction de
la proportion initiale d’allele A, p4, pour certaines valeurs de 81 et 2 (autour de la criticalité,
c’est-a-dire lorsque ¢; passe de 1 & une valeur strictement plus petite).

0.95 A
0.98
0.90

< 0.851 < 0.96
o —— beta_1=0.2000 o —— beta_2=0.0000
0.80{ —— beta_1=0.3333 —— beta_2=0.1667
—— beta_1=0.4667 0.941 — peta_2=0.3333
0.75{ — beta_1=0.6000 —— beta_2=0.5000
—— beta_1=0.7333 —— beta_2=0.6667
0.70 { — beta_1=0.8667 0.921 — peta_2=0.8333
beta_1=1.0000 beta_2=1.0000
0.65 1— : : : : : : : : : : :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
rho_A rho_A

FIGURE 2.1 — Valeurs de g4 en fonction de p4 pour différentes valeurs de B et B2. A gauche,
By est fixé & 0.7 et B varie. A droite, 31 est fixé & 0.2 et 35 varie. Dans les deux cas b = 1. La
symétrie de notre modéle implique que gq(pa) = ga(l — pa).

2.3.2 Homogamie, recherche de partenaire, et spéciation

Motivation et modéle Notre deuxiéme objectif a été d’étudier comment I’homogamie, cou-
plée & une structuration spatiale, peut générer I’arrét des flux de génes, ou des reproductions,
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entre deux sous-populations. Pour ce travail, détaillé dans ’article ( ), nous

supposons maintenant que les individus sont tous homogames, que 'espace des génomes est

constitué de deux alléles possibles, correspondant & deux versions d’un géne, situé a un locus

donné du génome : G = {A,a}, et que l'espace est constitué de deux patchs (écologiquement

équivalents, comme mentionné dans la Section 2.2) : i € Z = {1,2}. On suppose alors que

(7) Les individus se rencontrent pour se reproduire, de fagon uniforme au sein de chaque patch,
mais la probabilité pour qu’une rencontre entre deux individus donne lieu & un descendant
est plus élevée lorsqu’ils ont le méme génotype. Ainsi le taux auquel un individu de génotype
« nait dans le patch ¢ vaut

Nai 1 Na i 1 Nai
/\Om(n) =} (?’la7i/8’ inaﬂ‘i + in&,‘77
Na,i + Nai Na,i + Nayi Na,i + Nayi (2 9)
Bnra,i + nay
= bna —
’ . .
Na,i + Nayi

Le paramétre 5 > 1 représente la compatibilité génétique d’un couple d’individus homo-
game, dans le sens ot les individus se rencontrent uniformément au hasard et deux individus
qui se rencontrent ont une probabilité 5 fois plus élevée de produire un descendant s’ils ont
le méme génome.

(i) Les individus migrent d’un patch a l'autre & un taux proportionnel a la proportion d’indi-
vidus qui ne sont pas du méme génotype qu’eux, dans leur patch (cf Figure 2.2) :

Nai ) Na,iNa,i

) —p et (2.10)
Na,i + Nayi

. =(n) = pn. 1_
pa,z—)z( ) p a,z( na,i"‘n&,i

Les exemples d’espéces d’animaux qui migrent pour trouver des partenaires sexuels sont

bien documentés ( ; ). Par ailleurs un mécanisme simi-
laire de migration a été étudié dans ( ) pour un espace continu.
Enfin nous avons considéré dans ’article ( ) des classes plus générales de

modéle, avec plus de deux patchs et des formes plus générales de migration.

Résultats Notre premier résultat est le Lemme 2.1, énoncé en préambule de ce chapitre. Il
nous dit que lorsque la capacité de charge K tend vers l'infini, le processus stochastique

K

est proche de l'unique solution (z (t) t > 0) du systéme dynamique suivant, qui part de la
condition initiale z(0) := limg oo (N ( )/ K)(aies € RE

(Z5(t),t > 0) = (ZF,(t), (a,i) € £, > 0) = <NK(t),t > 0) ,

oA (0) = an [N — d = eaan + za) & fi; i
a0 = PR —dcan ) —pes s
$anlt) = 2aa VAR 0o clons + ) —pr | +pEan |

\ dtza Q(t) — “a2 [ % —d- C(ZA’2 + Za’?‘) - pZA,Zziia,Q] +p2§?17f§¢;1,1'
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naA1Ma,l
nA4,1+na,1

nA1Ma,1 a
nA,1+MNa,1

nA2Mg,2

N4 27Ma,2
pnA,2+na,2

e A-individuals

® a-individuals
- migration of A-individuals from one patch to the other (rate indicated)
» migration of a-individuals from one patch to the other (rate indicated)

FIGURE 2.2 — Taux auquel une migration entre deux patchs a lieu.

Notre deuxiéme résultat consiste a étudier les équilibres du systéme dynamique (2.11). Rappelons
que B > 1, b > d, et notons
Bb—d

C

¢:=

Théoréme 2.5. Les points d’équilibre dans Ri du systeme dynamique (2.11) sont les suivants :

(2.12)

1. Les points pour lesquels la population ne contient plus qu’un seul type dans un seul patch
(¢,0,0,0) (0,¢,0,0) (0,0,¢,0) (0,0,0,¢) (2.13)

2. Les points pour lesquels chaque type est présent dans exactement un patch :

<C7 07 07 C)? (07 C? C? 0) (2'14)
3. Les points pour lesquels seulement un type reste présent, dans les deux patchs :
(¢,0,¢,0),  (0,¢,0,0) (2.15)

4. Les points pour lesquels les deux types restent présents dans les deux patchs :

bB+1)—2d b(B+1)—2d b(B+1)—2d b(B+1)—2d
< 4c ’ 4e ’ 4 ’ 4c )

(2.16)

(VB By (AR a1

(EaCJr\FC f)} (Z&C Q\F C+\F>

(2.18)
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Les seuls équilibres stables parmi cette liste sont ceux définis dans les Equations (2.14) et (2.15).

Notre troisiéme résultat porte alors sur la convergence des solutions du systéme dynamique
(2.11) vers I'équilibre qui nous intéresse (¢, 0,0, (), pour lequel chaque type finit dans un seul

patch (les équilibres (0, ¢, ¢,0), (¢,0,¢,0) et (0,¢,0,¢) pouvant étre traités de fagon symétrique).
Pour cela nous introduisons le domaine

&
D:={z€ R, 241 — 241 > 0,242 — 242 > 0},

et le nombre réel positif

. VBB =138 +21) —4d| -b(B-1) (2.19)

Nous savons que py < b(S + 1) — 2d sous les hypothéses appropri¢es. Enfin, pour tout p €
[0,b6(8 4+ 1) — 2d], nous introduisons le domaine

b 1) —2d—p 2b8B —2d
Ky = {ZGD, {za1 + 2za1, 242+ a2} € B+1) p’ b +p]}.

2c 2c
Théoréme 2.6. Soit p < py. On a

(1) Toute solution (z(t),t > 0) du systéme dynamique(2.11) qui démarre dans D converge vers
léquilibre (¢,0,0,().

(13) St la condition initiale z(0) de la solution (z(t),t > 0) du systéme dynamique (2.11) est
dans ICp, alors il existe deux constantes positives ki et ko, dépendantes de la conditions
initiales, telles que pour tout t > 0,

I12(t) = (¢,0,0,Q)| < kre™*".

Enfin notre quatriéme résultat porte sur le processus stochastique Z(¢),¢ > 0) : son com-

portement en temps long et le temps au bout duquel chaque type reste présent dans un patch
uniquement.

Théoréme 2.7. Supposons que ZX(0) converge en probabilité vers un vecteur déterministe z°
appartenant a D, avec (2271, 28172) #(0,0). Soit

B. :=[(¢ — &) K, (C+ &) K] x {0} x {0} x [(( — &) K, (¢ + ) K].

Il existe trois constantes positives g, Cy et m, et une constante positive V' dependant de (m,eq)
telles que st p < pg et € < €q, alors

TBS 1
logK b(p—1)

< Coe, NF (T +t) € By Wt < eVK> =1, (2.20)

ot Té(, B C Ri est le temps d’atteinte de Uensemble B par le processus N .
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Ce théoréme donne l'ordre de grandeur du temps nécessaire pour atteindre l'isolement repro-
ductif entre les deux patchs, en fonction du paramétre d’échelle de la taille de la population, K.
Notons que le temps nécessaire pour atteindre l'isolement reproductif ne dépend pas du para-
métre p. Cela s’explique par le fait que le temps nécessaire pour atteindre un voisinage de 1’état
(¢,0,0,() est de 'ordre de 1, et qu’a partir de ce voisinage, le temps nécessaire pour I’extinction
compléte des individus a dans le patch 1 et des individus A dans le patch 2 est beaucoup plus
long (de l'ordre de C'log K'). Au cours de cette seconde phase, les migrations entre les deux patchs
sont déja équilibrées, ce qui entraine 'indépendance par rapport a p. De plus, la constante C'
ne dépend pas de d et ¢ puisqu’il n’y a pas de différence écologique entre les deux types et les
deux patchs : durant la seconde phase, le taux de natalité des individus a dans le patch 1 est
proche de b puisque le patch 1 est presque entiérement occupé par des individus de génotype
A, et leur taux de mortalité naturelle peut étre approximé par d + ¢ = b8 ou le terme c¢( pro-
vient de la compétition exercée par les individus A. Ainsi, leur taux de croissance naturelle est
approximativement b — b qui dépend bien uniquement des paramétres de naissance.

Le Théoréme 2.7 donne non seulement une estimation du temps auquel la population atteint
un voisinage de la limite du systéme dynamique donnée dans I'Equation (2.14), mais indique
aussi qu’apreés ce temps la population reste dans ce voisinage pendant longtemps. Le Théoréme
4 de ( ) généralise le Théoréme 2.7 au cas ou il y a plus de 2 patchs. Enfin,
I'hypothése (2271,291’2) # (0,0) est nécessaire pour obtenir la borne inférieure dans (2.20). En
effet, si (22’1,2372) = (0,0), 'ensemble B. est atteint plus rapidement, et donc seule la borne
supérieure reste valable. Dans ce cas, la vitesse d’atteinte de I’ensemble B. dépendra de la vitesse
de convergence de la suite (Zfl, Z/{f,z) vers (0,0). Dans l'exemple trivial ou (Zf17 Zfl(,Q) = (0,0),
Tg sera d’ordre 1, ce qui correspond au temps nécessaire aux processus Z f{ et Z (fg pour atteindre
chacun un voisinage de I’équilibre (.

Notons que la limite atteinte dépend du génotype initialement majoritaire dans chaque patch,
puisque le sous-ensemble D est invariant sous le systéme dynamique (2.11). Par ailleurs, lorsque
p = 0, les résultats du Théoréme 2.6 peuvent étre prouvés facilement puisque les deux patchs
sont indépendants I'un de l'autre. La difficulté est donc de prouver le résultat lorsque p >
0. Notre argumentation nous permet de déduire une constante explicite pg sous laquelle on a
une convergence vers un équilibre avec isolement reproductif entre patchs. Cependant, nous ne
sommes pas en mesure de déduire un résultat rigoureux pour tout p. En effet, lorsque p augmente,
il y a plus de mélanges entre les deux patchs ce qui rend le modéle difficile a étudier. Néanmoins,
les simulations présentées dans la Figure 2.3 suggérent que le résultat reste vrai.

Dans cette figure, nous tragons le temps 7;(p) auquel la solution du systéme dynamique (2.11)
atteint I’ensemble

Se = {(24,1, 20,1, 24,2, Za2) € RY, (241 — O)® + 221 + 230 + (202 — ()* < %},

c’est-a-dire le premier temps auquel cette solution atteint un e—voisinage de (¢, 0,0, (), pour
différentes conditions initiales et en fonction du taux de migration p. Les paramétres démogra-
phiques sont 8 =2, b =2,d =1 et ¢ = 0.1, et nous prenons ¢ = 0.01. Pour ces paramétres,
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shifted time to reach the equilibrium shifted time to reach the equilibrium
—n=
1
] § L
-0.57 —_ 5
4 — 10
— 15
B ——
1.0
[} [}
E E-
. 1.5{ .
720:
-25 T T T T -1.0 T T T T 1
0.0 05 1.0 15 2.0 25 3.0 0.0 05 1.0 15 2.0 25 3.0
migration rate p migration rate p
(a) (24,2(0), 2a,2(0)) = (1,30) (b) (24,2(0), 24,2(0)) = (15,16)

FIGURE 2.3 — Pour différentes conditions initiales nous tragons p — T.(p) — T.(0). La condi-
tion initiale est (z4,1(0),24,1(0) — 0.1,242(0),2,2(0)) ou z41(0) € {0.3,0.5,1,2,3,5,10,15}
comme représenté par les couleurs de la légende, et (242(0),24,2(0)) = (1,30) sur la gauche,
et (24,2(0), z4,2(0)) = (15,16) sur la droite.

¢ =30et pp =5 —1~ 1.24. Nous remarquons que l'impact du taux de migration sur le
comportement du temps nécessaire a la population pour atteindre un voisinage de son équilibre
correspondant & un isolement reproducteur est fortement dépendant de la condition initiale.

2.3.3 Heétérogamie et diversité génétique

Motivation et modéle La troisiéme question qui nous a intéressées est celle de la diver-
sité génétique générée par les préférences d’appariement et en particulier par I’hétérogamie. Ce
travail, en collaboration avec Violaine Llaurens (CNRS), est détaillé dans ( ).
Des résultats classiques de génétique des populations montrent que la surdominance, c¢’est-a-dire
I’avantage sélectif des individus hétérozygotes sur les individus homozygotes, favorise la diversité
génétique ( ). Cette surdominance peut étre le résultat de préférences d’appa-
riement, lorsque les individus préférent se reproduire avec des individus éloignés génétiquement
( ). C’est le phénomeéne que nous étudions ici.

Pour cela, comme dans la Section 2.3.2, nous considérons une population d’individus haploides
caractérisés par leur génome & un seul locus. Plus précisément nous supposons qu’il y a k alléles
possibles au locus considéré, notés 1,2, ..., k. Ces individus se reproduisent de fagon sexuée :
chaque individu de type ¢ se reproduit au taux f;, choisit un partenaire uniformément dans la
population (qui n’est plus spatialisée, comme dans la Section 2.3.1), et cette rencontre donne lieu
a un nouvel individu avec une probabilité p;; si le deuxiéme parent a le génome (ou le type) j.
Nous supposons pour finir une transmission Mendélienne de ces alléles, comme dans les sections
précédentes (i.e. 'enfant d’un couple de parents de génotypes respectifs i et j aura pour génotype
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i ou j avec probabilité 1/2 pour chacun). On sait alors, sous une hypothése de grande taille de
population (Lemme 2.1 encore), que le processus de naissance et mort considéré et proprement
renormalisé converge vers l'unique solution (21(t), 22(t), ..., 2k(t))t>0 du systéme dynamique

k
)=z (Y bipiy ;@pﬁ sz((tt)) —d—cz(t) |, ie{l,...k}, t>0 (2.21)
j=1

partant de (21(0), ..., 2£(0)) € Rk ott pour tout t > 0, 2(t) = Zle zi(t) est la masse totale de
population au temps .

Nous notons
o inp PPt Bipi
1<i,j<k 2
et supposons que b > d > 0. Pour (i,7) € {1, ..., k}2, on introduit aussi
S Bivij + Bjpji
ij = 5
2b

et 'Equation (2.21) se réécrit alors

k

4(t) = z(t) [ 0D (1+s4)

Jj=1

Zj t)

FOR d—cz(t) | . (2.22)

Pour tout 7,5 € {1,..,k}, le paramétre s;; peut étre interprété comme 'avantage sélectif d’une
paire de parents ayant pour génotypes i et j. On note M = (s;5)1<i j<k la matrice de I’ensemble
des avantages sélectifs.

Résultat général Notre premier résultat donne une condition sur les avantages sélectifs s;;
sous laquelle la diversité génétique sera maintenue, ainsi que 1’état limite de la population consi-
dérée, sous cette condition.

Théoréme 2.8. Supposons que det(M) # 0 et que

M™1>0, on 1=|..]. (2.23)
1

Le systéeme dynamique (2.22) admet un unique équilibre strictement positif

1 b M-11
AT | R —) () [ — 2.24
c ( + 1T M-11 > 17117 (2.24)

o 1T est le vecteur 1 transposé.

Qui plus est, en partant de n’importe quelle distribution allélique strictement positive, la popula-
tion se stabilisera autour de cet équilibre si et seulement si la matrice M a exactement 1 valeur
propre strictement positive et k — 1 valeurs propres strictement négatives.
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La Condition (2.23) est facile a vérifier numériquement, la matrice M étant donnée. Le
Théoréme 2.8 permet en outre l'exploration de la diversité génétique (typiquement le nombre
d’alléles maintenus en temps long) permise par différents structures de préférences d’appariement
et notamment d’hétérogamie. C’est I'objet de la fin de cette section.

Application a quelques cas particuliers Nous commengons par l'application du Théoréme
2.8 a quelques cas particuliers, permettant de retrouver ou de démontrer plusieurs résultats déja
connus ou conjecturés par la littérature de génétique des populations. Nous prouvons en effet que
dans le cas ol la population est constituée de deux alléles, alors la population admet un équilibre
strictement positif si et seulement si s19 > s11 et o1 > S99, C’est-a-dire si tous les individus sont
hétérogames. Ce résultat était connu ( ( )). Dans le cas ou la population est
constituée de trois alléles nous montrons que ces trois alléles se maintiennent en temps long si et
seulement si

s12 < s13+ 823, S13 < S12+ 823,  S23 < S12 + S13- (2.25)

Dans I’article ( ) les auteurs ont prouvé que dans une population constituée
de k alléles une condition circulaire du méme type est nécessaire au maintien de la diversité
génétique. Dans le cas k = 3 nous montrons donc que cette condition est aussi suffisante. Enfin
le Théoréme 2.8 permet de montrer que dans le cas le plus simple d’hétérogamie, tel que s;; =
p+€l;»; alors la diversité génétique se maintient en temps long quel que soit le nombre d’alléles
initialement présents.

Construction de la diversité génétique Dans cette section nous appliquons le Théoréeme
2.8 a I’étude de la construction progressive de la diversité génétique, par apparition successive de
mutations. Nous supposons donc que de nouveaux alléles peuvent apparaitre dans une population
dans laquelle un ou plusieurs alléles coexistent déja. Nous qualifions donc le nouvel alléle apparu
de mutant et les alléles préexistants d’alléles résidents. Nous considérons que les mutations sont
suffisamment rares pour que la dynamique de la population résidente atteigne son équilibre
entre deux apparitions de mutations. Nous cherchons alors & étudier le devenir des mutations
successives et non simultanées dans la population. Ce cadre classique est proche du cadre de la
dynamique adaptative introduit dans ( ), car nous considérons des événements
de mutation rares. Cependant, nous ne supposons pas que les mutations ont nécessairement de
faibles effets. Nous caractérisons les conditions sur les paramétres d’avantage sélectif de 1’alléle
mutant (lorsqu’il s’accouple aux différents alléles résidents), qui permettent son invasion, c’est-
a-dire sa persistance a long terme dans la population.

Théoréme 2.9. Considérons une population résidente stable qui contient k types et caractérisée
par une matrice de préférences M, c’est-a-dire (d’aprés le Théoreme 2.8) telle que M satisfait
M=11 > 0 et la deuziéme valeur propre de M est négative.

Considérons un type mutant qui arrive dans la population résidente, caractérisé par les avantages
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sélectifs S = (Sk41,i)i=1,.k €t 0 = Sp1k+1. Notons la nouvelle matrice de préférences

_ M S
\/i p—
ST &

Si M—11 > 0, c’est-a-dire si ’équilibre a k + 1 types existe, alors il est globalement asymptoti-
quement stable.

Ce résultat donne le comportement asymptotique de la population lorsqu’un équilibre & k41
alléles existe. Lorsque cet équilibre n’existe pas I'apparition du dernier alléle peut donner lieu &
des comportements divers, notamment la disparition d’un ou plusieurs alléles pré-existants. Ce
phénomeéne est illustré dans la Figure 2.4 dans un cas trés simple ot il y a 3 alléles résidents et
ol la matrice M avant et aprés apparition du quatriéme alléle vaut respectivement

s
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La figure 2.4 montre qu’aprés ’apparition du quatriéme alléle, lorsque 1’équilibre a 4 alléles
n’existe pas, I'état final de la population peut contenir 2 ou 3 alléles.

(2 selective advantage with allele 3 : 2=0.3 (b) Selective advantage with allele 3 : 2207 _(c) Selective advantage with allele 3 : z=1

s

Selective advantage with alele 2 (y)
Selective advantage with alele 2 (y)
Selective advantage with allele 2 (y)

30 30 30

05 15 20 25 05 15 20 2% 05 15 20 25
Selective advantage with allele 1 (x) Selective advantage with allele 1 (x) Selective advantage with allele 1 (x)

Number of alleles maintained

d) Selective advantage with allele 3 :2=1.5 _(e) Selective advantage with allele 3: z=2 _(f) Selective advantage with allele 3 : 2=
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FIGURE 2.4 — Nombre d’alléles dans la population a ’équilibre, aprés 'introduction d’un nouvel
allele dans une population d’hétérogamie initialement homogéne (parameétre s) en fonction des
paramétres de préférences d’appariement entre l’alléle mutant et chacun des alléles résidents.
Dans la zone blanche le mutant n’envahit pas, dans la zone rouge les quatre alléles se main-
tiennent, dans la zone jaune seulement 3 alléles se maintiennent, et dans la zone bleue seulement
2 alléles se maintiennent. Les paramétres sont b =1,d =0,c=1,s = 1.
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o

Application & un modéle de génétique quantitative Notre dernier résultat porte sur
I’étude d’un modéle de génétique quantitative. Dans cette section ’espace des génomes est G =
{0, 1} et on définit la distance entre deux génomes g = (g1, g2, ..., gr) et ¢ = (g}, ghs -, 97) €G
par

L
d(g, g/) = Z 1gﬁég§'
=1

Cette hypothése de structure du génome en L sites polymorphes est appropriée par exemple
pour modéliser le complexe majeur d’histocompatibilité (MHC') chez les vertébrés (

). On suppose alors, pour rester dans le cadre d’étude de I’hétérogamie, que plus deux
individus ont des génomes distants plus le succés reproductif du couple qu’ils forment est élevé.
Plus précisément nous supposons que sz;, = d(z,y)* et nous étudions I'impact de « et de la
taille L du génome sur la diversité génétique soutenue par la population. Nous obtenons que le
paramétre « joue un role trés important dans la quantité de diversité génétique que la population
peut contenir. Pour commencer, nous montrons que quel que soit le nombre de sites L, I’équilibre
avec tous les génomes de G existe, mais il semble instable lorsque o > 1 (Figure 2.5).

&
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FIGURE 2.5 — Stabilité de la population dans laquelle tous les alléles possibles sont
présents, explorée en utilisant la deuxiéme valeur propre de la matrice de sélection M, pour
différents nombres de sites L au locus considéré, et en fonction du paramétre « de la fonction f
qui code la relation entre la distance génétique et la préférence d’appariement. Notons que dés
que o > 1 , cette valeur propre devient positive, ce qui implique que 1’équilibre contenant tous
les alléles n’est pas stable, d’aprés le Théoréme 2.8.

Lorsque a < 1, le Théoréme 2.8 nous dit que 1’équilibre avec tous les génomes est stable.
Néanmoins ce résultat ne nous permet pas de savoir quel sera le résultat d’'une introduction
progressive de mutations. Cette question est difficile et nous I'avons étudiée de fagon numérique.
La Figure 2.6 donne un résultat de simulation de la dynamique du nombre d’alléles dans la
population au cours du temps et au fur et & mesure des introductions successives d’alléles. Pour
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les paramétres choisis les simulations aboutissent toutes & une diversité génétique maximale,
c’est-a-dire une configuration avec tous les (64) génomes possibles présents dans la population.
Lorsque a > 1, la dynamique de la diversité génétique est trés différente. En effet lorsque o > 1,
nous prouvons que les conditions d’invasion énoncées dans le Théoréme 2.9 impliquent que la
population a l’équilibre contient d’abord un alléle, puis toujours exactement deux alléles (lors-
qu’un nouvel alléle apparait dans la population qui en contient déja deux, soit 1’alléle mutant
s’éteint soit il remplace un alléle initialement existant), et la distance génétique entre ces deux
alleles est croissante. La population finit donc par contenir uniquement les deux génotypes les
plus éloignés : (0,...,0) et (1,...,1).
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FIGURE 2.6 — Evolution du nombre d’alléles maintenus dans la population, en sup-
posant des mutations ponctuelles et une forme convexe de la fonction reliant la
distance génétique et la fitness d’un couple d’alléles (o < 1). A partir d’une population
initiale comportant deux alléles, nous induisons numériquement des mutations successives et sui-
vons leur succés d’invasion au fil du temps. Le panneau (a) montre la distribution des alléles
dans la population au fil du temps. Chaque couleur correspond & un alléle donné et la hauteur
de la barre correspond au nombre d’individus porteurs de chaque alléle dans la population & un
moment donné. Le panneau (b) indique le nombre d’alléles maintenus & ’équilibre aprés chaque
mutation jusqu’a ce que le nombre total d’alléles soit atteint. Chaque ligne correspond a une
simulation numeérique différente (n = 6). Ici, L = 6 et a = 0,6 de sorte qu’il y a 26 = 64 alléles
possibles.

2.3.4 Bilan des résultats

Dans cet ensemble de travaux nous avons étudié ’hétérogamie et I’homogamie, en utilisant des
modéles individu-centrés multi-types et avec interaction. Nous avons créé et étudié des modéles
les plus simples possibles, permettant de répondre aux questions qui nous intéressent. Pour cette
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classe de modéles nous avons dans un premier temps donné des conditions explicites sous lesquels
un mutant homogame a une probabilité d’invasion strictement positive, et nous avons caractérisé
la probabilité et la durée de cette invasion. Ensuite nous avons montré comment I’homogamie
couplée a une structuration spatiale et une migration liée & la recherche de partenaire sexuel
peut générer une spéciation, ou I'arrét d’un flux de génes entre deux sous-populations. Enfin
nous avons étudié le niveau de diversité génétique permis par ’homogamie et la construction
progressive de cette diversité, par apparitions successives de mutants.

2.4 Eléments de preuves

Preuve du Théoréme 2.3

La preuve du Théoréme 2.3 consiste a étudier la dynamique de population en la découpant
en trois phases : survie ou extinction de I’alléle mutant P, puis phase de croissance quasiment
déterministe de la population, et enfin extinction de I’alléle résident p.

Survie du mutant Comme mentionné juste aprés la Proposition 2.2, tant que le nombre
d’alléles P est petit, la dynamique du processus stochastique (Nap(t), Nop(t))i>0 peut étre
approximée par celle d’un processus de branchement multi-type surcritique, dont la matrice
moyenne est donnée par 'Equation (2.5) et dont les probabilités d’extinction s4 et s, partant
respectivement d’un mutant de génotype AP ou d’un mutant de génotype aP satisfont donc le
systéme d’équations

{b(l —54) + Baa(s% — s4) + Baa(sasa —54) =0 (2.26)

b(1 — 54) + Baa(52 — 54) + Baa(5454 — 84) = 0.

Cette approximation est justifiée en controlant la population résidente (Nap(t), Nap(t)) jusqu’an
temps inf(TF, T.e) auquel le nombre d’alléles P atteint soit 0 soit e¢K ou ¢ € {1/2,1}. Nous
montrons plus précisément (Proposition 3.1 de ( )) qu’il existe une fonction 7
continue et nulle en 0 et une constante Ay > 0 telles que pour € € {1/2,1},

T 1
limsup [P | T.e < To A Rage NUoass, -2l < n(e)|Np(0) =eq | — (1 —qa)| = 0:(1),
K—o00 In K A
et
limsup [P (To < Toe A Rage AU1/6|Np(0) = €q) — ga| = 0:(1), (2.27)

K—o0
o R, (resp. U,) est le temps au bout duquel le nombre de copies de 'alléle p s’éloigne de sa
valeur initiale K % de plus de z (resp. le temps au bout duquel la proportion d’individus de
génotype Ap parmi les individus portant 1’alléle p s’éloigne de sa valeur initiale p4 de plus de z)
et par convention, o.(1) tend vers 0 quand e tend vers 0. Cette proposition est le résultat difficile
de l'article. Pour la montrer nous utilisons la décomposition en semi-martingale du processus
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(Nap(t), Nap(t), Nap(t), Nap(t))i>0 et encadrons d’abord la proportion d’individus de génotype
Ap parmi les individus portant l'alléle p (Lemme 3.3) puis la quantité de copies de l'alléle p
(Lemme 3.4). Nous pouvons alors encadrer stochastiquement la population (Nap(t), Nop(t))e>0
par deux processus de branchement bi-types N(&) et N(&1) tels que presque stirement pour
tout t < Toe ATo AR 4ge AUz, Nc(f’_)(t) < Nup(t) < Néf’ﬂ(t) dont les probabilités d’extinction
respectives g5 et ¢5 1 satisfont 0 < ¢§7 —¢%~ — 0 quand € tend vers 0 (Section 3.1.3 de

(2021)).

Phase champ moyen Une fois que le mutant a atteint le niveau K, le Lemme 2.1 nous
indique que le processus stochastique (Nap(t), Nap(t), Nap(t), Nap(t))i>0 est bien approximé par
le systéme dynamique décrit par 'Equation (2.11) dont les équilibres et les bassins d’attractions
sont déterminés. Le probléme est alors d’avoir une information sur la valeur "initiale" du couple
(Nap, Nyp) lorsque Np dépasse £$ K. Nous montrons que 'on peut trouver un temps assez court

s N : Nap(t) Ngp(t)
(inférieur a T \/g) auquel les proportlo'ns N iNe® ¢ MmN D sonjc proches de celles
données par le Théoréme de Kesten-Stigum ( ( )), & savoir le vecteur propre

a gauche de la matrice J (Equation (2.5)) associé a la valeur propre maximale .

Extinction du résident La derniére phase de la dynamique consiste & encadrer le temps
d’extinction des individus de génotypes Ap, ap et aP et & controler la population d’individus
AP pendant ce temps. Cette étape consiste a borner supérieurement le processus stochastique
(Nap(t), Nap(t), Nop(t))e>0 par un processus de branchement multi-type sous critique et & utiliser
des résultats classiques concernant ce type de processus stochastiques, que ’on peut trouver par

exemple dans ( ).

Preuve des Théorémes 2.5, 2.6 et 2.7

La preuve du Théoréme 2.5 qui détermine les équilibres du systéme dynamique (2.11) et leur
stabilité consiste & manipuler les équations stationnaires satisfaites par ces équilibres. La preuve
du Théoréme 2.6 est découpée en deux parties. Rappelons les définitions suivantes :

D={zec Ri,zA,l — 2a1 > 0,242 — 242 > 0},

et

b(B+1)—2d—p 208 —2d+p
2¢ ’ 2¢ ]}

Ky = {Z €D, {za1+ 2Za1, 242+ Za2} €

La premiére partie de la preuve du Théoréme 2.6 consiste a prouver que n’importe quelle solution
du Systéme (2.11) qui part dans D atteint puis reste dans le sous-ensemble IC,, (ce sous-ensemble
est stable). C’est I'objet du Lemme 2 dans ( ). Sa preuve consiste a controler
d’abord la taille totale de population puis les tailles respectives de population dans chaque patch.
La seconde partie de la preuve du Théoréme 2.6 consiste a exhiber une fonction de Lyapunov pour
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le systéme dynamique (2.11) sur p,. Plus précisément nous considérons la fonction V : D — R :

V(z) = n (ZA,1 + Za,1> ol (Za,2 + ZA,2> .

ZA1 — Za,l Za2 — RA2

Nous prouvons (Lemme 3 de ( )) que la fonction V' est une fonction de Lyapunov
sur IO, si p < pp. Ceci donne la convergence de toute solution du systéme dynamique (2.11)
partant dans D vers I’équilibre approprié ((,0,0,¢). Une étude plus fine de la dynamique des
différences 241 — 24,1 €t zq2 — 24,2 donne la convergence exponentiellement rapide une fois que
I’ensemble K, est atteint.

La preuve du Théoréme 2.7 combine les résultats du Théoréme 2.6 et une étude du processus
stochastique (Z%(t),t > 0) autour de I'équilibre (¢, 0,0,¢) quand K est grand. Plus précisément,
notons 7K = inf{t > 0, Zfl(t) + ng(t) = 0} le temps auquel il n’y a plus d’individus de type a
dans le patch 1 et plus d’individus de type A dans le patch 2 (qui est un état absorbant pour le
processus stochastique considéré). Nous obtenons que ce temps est d’ordre log(K)/(b(8—1)). Plus
précisément nous prouvons (Proposition 2 de ( )) qu’il existe deux constantes
positives g¢ et Cj telles que pour tout € < eg, sl existe n €]0,1/2[ tel que max(|z%71 -, |22’2 —
() <eetne/2< 2271,2372 < g/2, alors

pour tout C > (b( — 1))_1 + Cpe, P(Ty" < Clog(K)) K — 1,
——+00

pour tout 0 < C < (b(f5 — 1))71 — Coe, H(jo < C’log(l()) K > 0.
—+00

La preuve de cette proposition repose sur plusieurs arguments de couplage. La premiére
étape consiste & prouver que les tailles de population Z f{ . et Zi% restent proches de ¢ sur une
longue échelle de temps. La deuxiéme étape consiste a coupler les processus Zfl et Z f{ o avec des
processus de branchement sous-critiques dont les temps d’extinction sont connus, en s’appuyant
sur des travaux antérieurs ( ( ), Théoréme 3.c, et ( ), Chapitre

5).

Preuve des Théorémes 2.8 et 2.9

La preuve du Théoréme 2.8 consiste d’abord & donner, quand il existe, 'unique équilibre
positif donné par ’'Equation (2.24). Ensuite nous montrons par étude du Jacobien du systéme
dynamique donné dans I’Equation (2.22) autour de 1'unique équilibre, que cet équilibre est loca-
lement stable si et seulement si la matrice d’avantage sélectif M a une deuxiéme valeur propre
strictement négative. Enfin nous montrons la stabilité globale de cet équilibre en montrant que

v (- Fn () 1L m (%),
/=1

(=1

la fonction

est une fonction de Lyapunov pour le systéme dynamique (2.22), si z = ), 2, Z* = (27, ..., 2}})
et 2" =), 7.
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La preuve du Théoréme 2.9 repose sur ’étude de la matrice Jacobienne du systéme dynamique
de dimension k+1 autour du point (Z*,0). Pour prouver que l'existence de I’équilibre & k+1 alléles
entraine sa stabilité globale nous utilisons le complément de Schur et le Théoréme d’entrelacement
des valeurs propres.

2.5 Perspectives

Plusieurs de mes perspectives de recherches sont connectées & ce sujet. Tout d’abord, nous
cherchons actuellement, avec Manon Costa, Charline Smadi et Héléne Leman, & comprendre
I'impact des structures familiales sur 1’évolution génétique des populations. Nous considérons
par exemple un modéle de Wright-Fisher dans lequel les individus forment des couples, qui se-
ront choisis comme parents des individus de la génération suivante. Dans ce modéle les individus
n’ont donc pas de demi-fréres et sceurs, mais uniquement des fréres et sceurs. Nous voulons
étudier la composition génétique de la population dans ce modéle et notamment la comparer
a celle obtenue pour un modéle de Wright-Fisher biparental classique. Ce projet permettrait
de poursuivre nos investigations de l'impact des préférences d’appariement sur la composition
génétique des populations. Dans une toute autre direction, avec Luis Almeida (CNRS, Sorbonne
Université), je dirige la thése de Léo Micollet, qui porte sur la modélisation mathématique du
contréle de populations d’insectes par lacher de males stériles. Cette méthode de controle bio-
logique appelée technique de l'insecte stérile a été utilisée en pratique pour lutter par exemple
contre des ravageurs des élevages et des cultures comme la lucilie bouchére ou la mouche du
cerisier, et consiste a relacher réguliérement un grand nombre de méales stériles avec lesquels les
femelles présentes se reproduisent, produisant alors des ceufs non viables. Pour modéliser cette
méthode, Léo Micollet utilise des modéles individu-centrés multi-types, comme nous le faisons
dans ce chapitre. Son but sera alors d’étudier la dynamique de cette population : ses différentes
limites d’échelles (processus de branchement, systéme dynamique et processus de diffusion sto-
chastique), sa probabilité d’extinction, le temps nécessaire a sa réémergence en cas d’immigration
ou de taille de population trés réduite, et, en lien avec le chapitre suivant, I’optimisation du cotit
de cette méthode de controle de population d’insectes, par suivi a l'aide de relevés de piéges
permettant d’accéder a des données de comptage.
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Chapitre 3

Suivi de la biodiversité a 1’aide de
données citoyennes

3.1 Introduction

Ce chapitre porte sur I’évaluation et le suivi de la biodiversité, & partir de jeux de données is-

sus de programmes de sciences participatives. Ce travail, composé de deux articles (
( ) et ( )) réalisés en collaboration avec Christophe Giraud (Laboratoire de
Mathématiques d’Orsay), Clément Calenge (Office Frangais pour la Biodiversité) et Romain Jul-
liard (CESCO, MNHN), est en continuité avec les sujets présentés dans les chapitres précédents,
puisqu’il touche a la diversité génétique des populations, mais s’en détache nettement, par les
approches mathématiques et le niveau de proximité avec les données.

Ce travail a deux motivations. La premiére est de réaliser des cartes d’abondances relatives
d’espeéces, c’est-a-dire, pour une espéce donnée, de comparer son abondance, soit le nombre d’in-
dividus de cette espéce, dans différentes zones de l’espace. Ces cartes et leurs dynamiques tem-
porelles sont trés importantes pour la société, notamment pour comprendre et anticiper ’extinc-
tion, le déplacement, ou encore ’émergence et l'invasion d’une espéce. Elles permettent aussi
d’anticiper la réaction des espéces au réchauffement climatique ou & certaines modifications du
territoire. Les scientifiques qui travaillent sur la biodiversité dépensent de ce fait beaucoup de
temps, d’énergie et d’argent, a collecter des données (par exemple & partir de programmes de
capture-marquage-recapture) permettant de créer de telles cartes. Néanmoins, depuis 40 ans envi-
ron, certains programmes, appelés programmes de sciences participatives, ou sciences citoyennes,
permettent de faire appel aux compétences et a la motivation des citoyens pour récolter un grand
nombre de données d’observation de la biodiversité. Ces programmes imposent en général un pro-
tocole trés léger, de fagcon & maximiser la participation des citoyens. C’est 1a que réside notre
deuxiéme motivation. Ces données citoyennes manquent de calibration, et en particulier résultent
d’une intensité d’observation inconnue et trés inégale spatialement et temporellement. Nous sou-
haitons comprendre comment elles peuvent, malgré ce biais, étre utilisées pour améliorer notre
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connaissance de la biodiversité.

Nous nous sommes pour cela placés dans une situation dans laquelle nous avons a notre
disposition deux jeux de données d’observations : I'un issu d’un programme professionnel, et I'un
issu d’un programme de sciences participatives. Cette situation est de plus en plus courante,
et concerne méme d’autres domaines scientifiques, comme la météorologie, le climat, I’étude
de la qualité de l'air, des cours d’eau, etc... Plus concrétement, dans ce travail nous avons &
notre disposition deux jeux de données d’observation d’oiseaux en Aquitaine. Le premier jeu de
données est le résultat d’'un protocole trés précis imposé a des professionnels (plus de détails
seront donnés dans la section suivante), tandis que le deuxiéme rassemble les observations de
citoyens qui se sont simplement inscrits sur un site web et ont indiqué, s’ils le souhaitaient
et quand ils le souhaitaient, leurs observations d’oiseaux, faites au cours de leur journée ou
éventuellement lors de sorties dédiées a ces observations. L’objectif, a partir de ces données, est de
réaliser des cartes d’abondances relatives d’espéces, c’est-a-dire, pour chaque espéce considérée,
de fournir un estimateur du ratio du nombre d’individus de cette espéce, vivant dans deux zones
différentes de I'espace. Estimer la carte d’abondance relative d’une espéce est possible en utilisant
seulement le premier jeu de données, récolté selon un protocole calibré. Néanmoins les données
issues d’observations citoyennes sont beaucoup plus nombreuses, et ont une couverture spatiale
bien meilleure. Notre approche consiste & combiner ces deux jeux de données au travers d’un
modéle probabiliste, de fagon & bénéficier & la fois de la calibration apportée par les données
professionnelles, et de ’abondance des données citoyennes. Nous obtenons alors que combiner
les deux jeux de données permet une estimation plus précise des cartes d’abondances relatives,
que le seul jeu de données professionnel (Théoréme 3.1). Cette combinaison permet en outre de
fournir des cartes d’abondances d’espéces pour certaines espéces qui ne sont pas observées dans le
jeu de données professionnel, et d’estimer certains parameétres biologiques, comme les préférences
des espéces considérées a différents types d’habitats (Section 3.4.2), qui sont des informations
trés importantes notamment pour prédire la réaction des espéces au changement climatique ou
& certaines transformations du territoire.

Cette situation dans laquelle on dispose de plusieurs jeux de données d’observation d’une
méme réalité est de plus en plus courante, et je poursuis dans ce domaine par le co-encadrement
de la thése d’Emma Thulliez (INSA Rouen) qui porte sur I’évaluation de la qualité de l'air a
partir de combinaison de mesures de concentration en dioxyde d’azote, réalisées par quelques
stations fixes précises et un grand nombre de micro-capteurs de fiabilité bien moindre. Ce travail
en cours est détaillé dans la section de perspectives 3.6.

3.2 Données

Comme mentionné précédemment, notre objectif est d’estimer des cartes d’abondances re-
latives d’espéces a partir de deux jeux de données d’observations d’oiseaux en Aquitaine : un
jeu de données qui sera dit "standardisé" (car les observateurs ont dii suivre un protocole précis
pour y participer), et un jeu de données qui sera dit "opportuniste" (car les observations rap-
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portées peuvent avoir lieu lors de déplacements non nécessairement dévoués a ces observations).
La qualité de nos estimations sera évaluée a l'aide d’un troisiéme jeu de données qui est aussi
standardisé mais comporte moins de données que le premier. Je présente maintenant ces trois
jeux de données.

Le premier jeu de données, standardisé, est fourni par I’Office Francais pour la Biodiversité, et
est appelé ACT (pour Alaudidae, Columbidae, Turdidae, qui sont les principaux clades d’oiseaux
qui concernent ce programme ; le Tableau 3.1 présente la liste des espéces considérées). Dans ce
programme, la région Aquitaine a été discrétisée en 64 quadrats, et dans chaque quadrat, 5 points
espacés de lkm dans des habitats non urbains ont été définis. Ces points sont visibles dans la
Figure 3.1(B). Chaque point a été visité deux fois, pendant exactement 10 minutes, le matin, et
sous des conditions climatiques appropriées. Lors de chaque visite, 'espéce de chaque oiseau vu
ou entendu a été enregistrée, et pour chaque espéce le maximum des deux comptes issus des deux
visites a été retenu, selon des protocoles classiques dans le domaine de I'observation d’oiseaux.
Les observateurs sont des professionnels, employés par 1’Office Francais pour la Biodiversité ou
certaines associations de chasseurs. Entre 2008 et 2011, environ 9 500 observations d’oiseaux ont
été rapportées.

Pour le jeu de données opportuniste, on utilise la base de données en ligne mise en place
par la Ligue pour la Protection des Oiseaux. Chaque citoyen capable d’identifier des oiseaux
peut s’enregistrer sur ce site web, et rapporter ses observations (ou certaines de ses observations)
d’oiseaux, en mentionnant ’espéce, la date, I’heure et le lieu, & 500m prés. Des centaines d’ob-
servateurs ont ainsi rapporté des centaines de milliers d’observations. Nous ignorons dans quel
cadre ces observations ont été réalisées, et notamment la motivation des observateurs, s’ils rap-
portent certaines observations plutot que d’autres ou non, ou encore leur temps passé & observer.
Nous avons gardé uniquement les observations réalisées durant la méme période de temps que
celle du jeu de données standardisées, c’est-a-dire Avril & mi-Juin, entre 2008 et 2011. Ceci nous
donne environ 115 000 observations de 34 espéces d’oiseaux (voir le Tableau 3.1), dont les lieux
sont représentés dans la Figure 3.1 (B). Notons en particulier que seule une partie des espéces
observées dans le programme de la LPO font partie du programme ACT présenté précédemment.

Le jeu de données que nous utiliserons pour évaluer la qualité de nos observations est fourni
par le programme STOC (Suivi temporel des oiseauxr communs, ( )), un pro-
gramme de surveillance des oiseaux nicheurs mis en place par le Muséum National d’Histoire
Naturelle. Le protocole de ce programme est assez proche de celui du programme ACT, mais
sans restriction sur les espéces d’intérét. Ainsi les 34 espéces observées dans le jeu de données
fourni par la Ligue pour la Protection des Oiseaux sont aussi présentes dans ce jeu de données.
Entre 2008 et 2011, ce programme a donné lieu & 15 241 observations dans 251 points d’écoute,
aussi dans un habitat non urbain.
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TABLE 3.1 — Liste des 34 espéces d’oiseaux observées. Les 13 espéces suivies dans le programme

ACT sont indiquées par une astérisque.

Latin name

Espéce

Latin name

Espéce

Aegithalos caudatus
Alectoris rufa*
Carduelis chloris
Columba palumbus™*
Cuculus canorus
Dendrocopos magor
Fringilla coelebs
Hippolais polyglotta
Luscinia megarhynchos
Parus major
Phasianus colchicus™
Phylloscopus collybita
Pica viridis
Streptopelia decaocto™
Sylvia atricapilla
Turdus merula™
Turdus viscivorus™

Long-Tailed Tit
Red-Legged Partridge
European Greenfinch
Common Wood Pigeon
Common Cuckoo

Great Spotted Woodpecker
Common Chaffinch
Melodious Warbler
Common Nightingale
Great Tit

Common Pheasant
Common Chiffchaff
Eurasian Green Woodpecker
Eurasian Collared Dove
Furasian Blackcap
Common Blackbird

Mistle Thrush

Alauda arvensis™
Carduelis carduelis
Certhia brachydactyla
Coturniz coturnixz™
Cyanistes caeruleus
Erithacus rubecula
Garrulus glandarius™
Lullula arborea™
Milvus migrans
Passer domesticus
Phoenicurus ochruros
Pica pica™

Sitta europaea
Streptopelia turtur*
Troglodytes troglodytes
Turdus philomelos™
Upupa epops

Eurasian Skylark
European Goldfinch
Short-Toed Treecreeper
Common Quail
Eurasian Blue Tit
European Robin
Eurasian Jay
Woodlark

Black Kite

House Sparrow

Black Redstar
Eurasian Magpie
Eurasian Nuthatch
European Turtle Dove
Eurasian Wren

Song Thrush
Eurasian Hoopoe

3.3 Modéle

Nous divisons ’espace en J zones, ou sites, et nous voulons comparer, pour chacune des [
espéces considérées, son abondance & deux sites différents. Pour cela, nous supposons que nous
avons accés & deux jeux de données, indicés par k. On notera k = 0 pour le jeu de données
standardisé, et £k = 1 pour le jeu de données opportunistes. L’ensemble de ces jeux de données
nous donne donc le nombre X;;;, d’observations d’individus de 'espéce i € [1, 1], dans la zone

J € [1,J], pour le jeu de données k. On modélise alors les comptages X;;;, par
Xijk ~ Poisson(N;;Oyj), pouri=1,....1, j=1,...,Jet k=01,

ol Nj; est le nombre d’individus de '’espéce ¢ dans la zone j, et O;;; modélise 'intensité résultant
du protocole d’observation. La loi de Poisson est trés classique dans ’analyse des données de
comptage, et résulte de ’hypothése qu’a chaque instant, chaque animal de chaque espéce est
observé ou non, indépendant des autres animaux. Notre modele néglige donc les interactions
entre individus et entre espéces. Différentes pistes d’amélioration de ce travail sont évoquées
dans la Section 3.6. Pour finir nous supposons pour des raisons d’identifiabilité que chaque zone
a été visitée dans les deux jeux de données, et qu’au moins une espéce a été suivie dans les deux
jeux de données.

3.3.1 Premier modéle
Dans un premier temps, nous supposons que l'intensité d’observation O;j, est de la forme

Oijk = PixEjk,
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FIGURE 3.1 — Emplacements des observations pour les trois jeux de données disponibles. (A)
Jeu de données ACT'; (B) Jeu de données LPO; (C) Jeu de données STOC. L’espace est divisé
en quadrats de taille 30 x 20 km, qui sont les sites, ou les zones dans notre analyse. Le quadrat
contenant la métropole de Bordeaux (indiqué par une étoile dans la carte (A)) a été retiré de

I’analyse.

ou Py, et Ejj, sont des quantités vouées a modéliser les biais induits par la variabilité du processus
d’observation. Notre modéle consiste donc & supposer que les impacts relatifs de ’espéce et de
la zone sont indépendants. Un modéle plus complexe prenant en compte la division de I'espace
en différents types d’habitats sera présenté dans la Section 3.3.2. Pour I'instant, notre modéle se

réécrit donc :

Xiji ~ Poisson(N;j P Ej), pouri=1,....1, j=1,...,J et k=0,1, (3.1)

Les paramétres P, peuvent étre interprétés comme la probabilité de détection et de report
d’une observation d’un individu de 'espéce 7, pour le jeu de données k. Les parametres Ej, que
I’on appellera intensité d’observation dans la zone j pour le jeu de données k, représente 'impact
de la variabilité de 'effort (typiquement le temps passé & observer, le nombre de sorties, le nombre
d’observateurs, la variabilité des conditions d’observations...) dans la zone j pour le jeu de données
k. Rappelons que nous nous intéressons au cas ou le premier jeu de données est standardisé, tandis
que le deuxiéme est opportuniste. Cela peut s’interpréter mathématiquement par le fait que
I'intensité d’observation est connue (& une constante multiplicative prés) pour le jeu de données
standardisé (kK = 0), et peut étre supposée trés grande pour le jeu de données opportuniste
(k = 1). Typiquement pour le jeux de données standardisé fourni par 1'Office frangais pour la
biodiversité et présenté dans la Section 3.2 nous supposons que 'effort d’observation est le méme
dans chaque zone j, donc Fjo ne dépend pas de j. En revanche les intensités d’observations Ejq

sont supposées grandes mais inconnues.
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3.3.2 Raffinement : ajout d’une structure

Dans cette section, nous proposons un modéle plus général, qui prend en compte I'impact
de covariables, comme le type d’environnement (urbain, forestier, agricole, ...), la densité de
population humaine, 'altitude,..., a la fois sur ’abondance de chaque espéce et sur le processus
d’observation. Pour plus de simplicité, nous supposerons par la suite que ces covariables sont des
types d’environnement, mais notre approche peut étre plus générale. Dans notre travail, I’habitat
associé & chaque observation pourra étre inconnu, il sera traité comme une variable latente, dont
la loi est caractérisée par des paramétres appelés préférences d’habitat, que nous chercherons a
estimer. Les différents types d’habitat sont indicés par h € {1,2,..., H}.

Espéces : abondances et préférence d’habitat Comme dans la Section 3.3.1, on note IV;;
le nombre d’individus de ’espéce i dans la zone j. On suppose alors que la densité de l'espéce ¢
au point z de la zone j est donnée par

NijSin(a)
o Siw Ve
ot V77" est ’aire occupée par 'habitat h dans la zone j et h(x) est le type d’habitat au point
x. Les paramétres S;; peuvent donc étre vus comme la préférence de 1'espéce ¢ pour 'habitat h,
qui a un intérét applicatif fort, et que nous souhaitons estimer.

Observations rapportées Comme dans la Section 3.3.1, on indice le jeu de données standar-
disé par k = 0 et le jeu de données opportuniste par k& = 1. Chaque zone j est alors divisée en
plusieurs cellules indicées par ¢, telles que ’on connait la cellule dans laquelle chaque observation
a eu lieu. Cette cellule pouvant typiquement étre une commune, un quartier, ou un groupe de
communes. Notons que le découpage en cellules peut dépendre du jeu de données et que dans
chaque jeu de données seule une fraction des cellules a été visitée au moins une fois par les obser-
vateurs. Pour une cellule c¢ visitée dans le jeu de données k, on note X, . le nombre d’observations
rapportées, d’un individu de I'espéce 7. Comme pour le modéle précédent, on note E.; I'intensité
d’observation dans la cellule ¢ pour le jeu de données k, et on note P; la probabilité de détection
et rapport d’une observation de ’espéce ¢ pour le jeu de données k. Pour le jeu de données k, on
modélise 'intensité d’observation au point x dans la cellule ¢ par

Qh(a:)kEck
> awk Vit

ot Vieell est 'aire (connue) de la cellule ¢ couverte par 1'habitat h et gux € [0,1] modélise la
préférence des observateurs pour 'habitat i, pour le jeu de données k. On a alors

) qnk S;
X;er ~ Poisson | N;; E..P; E X V . 3.2
ick ( 1] ckl ik - Zh/ qh/th/c Zh/ Slh/ Vh/] hC> ( )
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Rappelons que les aires Vz‘me et Vce” sont connues dans ce modéle. Comme précédemment on
supposera naturellement que pour le jeu de données standardisées les intensités d’observations E
sont connues (& une constante multiplicative prés), et nous supposons par ailleurs que 1’habitat
associé a chaque observation standardisée est soit connu, soit satisfait que les ratios gno/q10 sont
connus pour tout h. Les autres paramétres sont inconnus.

Notre modéle consiste a supposer une différence d’échelle spatiale entre les individus observés
et les observateurs : les oiseaux choisissent leur position (ou leur habitat) a I’échelle de la région,
tandis que les observateurs choisissent la position de leur observation a 1’échelle de la cellule
(qui sera typiquement de I’échelle de la commune). Enfin, supposer que les observateurs comme
les individus observés n’ont pas de préférences particuliéres & certains types d’habitats revient
a poser qpr = S;; = 1 pour tout A, auquel cas on obtient que le nombre X;.. d’observations de
l’espéce i dans la cellule ¢ de la zone j pour le jeu de données k suivra le premier modéle (3.1).
Le modéle que nous venons de proposer consiste donc bien en un raffinement du premier modéle.

3.4 Reésultats : théorie, et application aux données

3.4.1 Reésultats théoriques

Identifiabilité et estimation des paramétres Pour les deux modéles (3.1) et (3.2), nous
pouvons prouver par des changements de variables adéquats I'identifiabilité des abondances re-
latives N;;/Nji ainsi que des préférences a I'habitat Sj;, qui sont les deux quantités qui nous
intéressent, a partir des observations.

Plus précisément pour le modeéle (3.1), le changement de variables
Pro P L 5 _ b Pu

et Py =

Nij = NijP1E .= P
g 1 10P1 T Eyw T Py Py Py

est tel que pour toute espéce i, toute zone j, tout jeu de données k, szﬁjkﬁ,k = NijEj, Py,
Nij/Nﬂ = Nij/Nila et EjO = EjO/ElO est connu. Alors en posant nij = IOg(Nij), €jk = IOg(E]k)
et pir = log(Py), le modeéle (3.1) peut étre vu comme un modéle linéaire généralisé :

Xiji ~ Poisson(X;ji), avec log(Aijir) = nij + €k + Dik, (3.3)

ol ejo = logE o est connu, pi1 = 0 pour tout i, et pjp = 0. On note alors 'estimateur par
maximum de vraisemblance (N”, E; ks ,k) des paramétres NU, E; ik et sz, qui peut étre obtenu
en pratique en utilisant la commande glm dans R.

Le modéle présenté dans la Section 3.3.2, qui intégre une structure en habitat, contient des
non-linéarités qui exigent une autre approche d’estimation car la vraisemblance de ses para-
métres ne peut pas étre maximisée de cette fagon. Nous choisissons une approche d’estimation
bayésienne implémentée par 1’échantillonneur de Gibbs JAGS ( ( )). Nous appelons
ce programme dans R ( ( )) en utilisant le package rjags ( ( ).
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Nous choisissons des priors non informatifs pour les différents paramétres & estimer et 1’échan-
tillonneur JAGS fournit, en sélectionnant les données simulées les plus proches des données
réelles, des échantillons distribués selon la distribution a posteriori des paramétres.

Amélioration de la précision des cartes (sans structure spatiale) Notre premier résultat
montre, pour le premier modéle (3.1), que les estimations des abondances relatives d’espéces
obtenues en combinant le jeu de données standardisé (pour lequel les ratios d’efforts d’observation
Ejo/Ejiy sont connus) et le jeu de données opportuniste (pour lequel les efforts Ej; peuvent étre
supposés grands) sont asymptotiquement meilleures que celles obtenues en utilisant uniquement
le jeu de données standardisé. Notre résultat permet méme de quantifier la réduction de variance
obtenue grace a la combinaison des données.

Théoréme 3.1. Sous le Modéle (3.1), posons J/\\fij et Ng les estimateurs de mazimum de vraisem-
blance du paramétre N;; obtenus en utilisant respectivement les deuz jeuzx de données (standardisé
et opportuniste), ou le jeu de données standardisé uniquement. On a

Ny N Nij Ny
lim E| 2| =E| =<2 |==2="" (3.4)
Ej1—o0 Ni1 Nzol N; Ni1
(12)
R - PioN;;
lim  Var(Ny;) = Var(N2) x —=——2—. 3.5

Ce résultat nous dit que lorsque l'effort d’observation ayant généré les données opportunistes
est trés grand (ce qui est ce que 'on attend de ce type de jeux de données), alors I'ajouter au

jeu de données standardisées pour estimer les abondances relatives d’espéces permet de faire
PioNij

221 PoNy;

de variance est en particulier importante pour les espéces rares (i.e. lorsque Nj; est petit), difficiles

décroitre la variance des estimations, en la multipliant par un facteur . Cette réduction

a détecter (i.e. lorsque Pj est petit), ou lorsque le nombre I d’espéces suivies est grand.

Amélioration de la précision des cartes (avec structure spatiale) Pour le Modéle (3.2)
qui prend en compte une structuration de ’espace en plusieurs types d’habitats, nous évaluons la
performance de notre approche de combinaison de jeux de données en utilisant des données simu-
lées. Plus précisément nous fixons tous les paramétres nécessaires (les abondances de population
Njj, les efforts Ey, les probabilités P, et les préférences gy, et S;p,, puis nous générons deux jeux
de données, suivant le Modéle (3.2). Nous estimons alors les parameétres d’intérét (notamment
les abondances relatives N;; /Ni1 et les préférences Sjp,/Si1), et nous comparons les distribution
postérieures obtenues, aux valeurs fixées pour ces paramétres. Plus précisément nous réalisons
ces estimations pour trois situations : (i) en utilisant uniquement les données standardisées et le
modele (3.2) qui a été utilisé pour générer les jeux de données ([Stand only with habl), (ii) en
utilisant les deux jeux de données et toujours le modéle (3.2) (|Opp+Stand with hab]), (iii) en
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utilisant les deux jeux de données mais en faisant nos estimations en supposant que les données
sont générées selon le premier Modeéle (3.1) ([Opp+Stand no hab).

Les Figures 3.2A et 3.2B montrent, comme prouvé dans le Théoréme 3.1 en I'absence de
structuration en habitats, que ’estimation obtenue en combinant les deux jeux de données est plus
précise que celle obtenue en utilisant uniquement le jeu de données standardisé. Elles illustrent
aussi le fait que, sans surprise, le fait de négliger les préférences pour différents types d’habitats
méne a des estimations biaisées des abondances relatives d’espéces. Notons que pour la Figure
3.2B nous choisissons comme abondance relative estimée Nl-j / Nil la moyenne de la distribution

postérieure de Nj;/Nji.

- <
ol | |
I
_ i
T T T T T T T 2
i] i s = i 5 (=] [Opp+Stand with hab] [Stand only with hab] [Opp+Stand no hab]
(A) Exemple de distribution a posteriori d’'une (B)  Boxplots des  différences  relatives
. B N . . _ (Nv["LOde”/N»[MOde”)7(1\/'1"/Nil)
abondance relative d’espéce Nys/N;; pour une es ij i1 j entre  abondances

Nij/Ni1
estimées et "réelles", en utilisant les deux jeux

de données (Opp+Stand) ou en utilisant unique-

péce i fixée, estimée avec la procédure [Stand only
with hab] (en noir), [Opp+Stand with hab] (en

bleu) et [Opp-+Stand no hab| (en pointillé). La
valeur fixée (que lon cherche & retrouver) est en
rouge.

ment le jeu de données standardisé (Stand only),
et en prenant en compte, ou non, la structuration
en habitat.

FIGURE 3.2

3.4.2 Application aux données étudiées

En pratique, les "zones" de notre modéle, indicées par j, seront les 63 quadrats définis dans
le cadre du programme ACT (Fig. 3.1(A)). Le quadrat contenant la zone de Bordeaux a été
enlevé car nous avons supposé et observé que le comportement des observateurs opportunistes
et la structuration de I'espace en différents habitats étaient trop différents dans ce quadrat, par
rapport aux autres. Pour les deux jeux de données ACT et STOC, nous prenons comme intensité
d’observation dans la zone j simplement le nombre de visites dans cette zone entre les années
2008 et 2011, puisque toutes les visites doivent avoir la méme durée. L’habitat a été défini en
utilisant ’occupation du sol, rendue disponible par Corine Land Cover. Plus précisément nous


https://www.statistiques.developpement-durable.gouv.fr/corine-land-cover-0
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avons retenu 7 catégories d’habitat permettant & la fois 'identifiabilité du modéle et une étude
pertinente du comportement des espéces considérées : zone urbaine, agriculture intensive, paysage
naturel ouvert, terres agricoles, forét de coniféres, foréts d’arbres a feuilles caduques, et foréts
mixtes.

Réduction de variance Le Tableau 3.2 illustre la réduction de variance énoncée dans le
Théoréme 3.1, pour les jeux de données présentés dans la Section 3.2. Pour remplir ce tableau
nous calculons pour chaque espéce la corrélation entre les abondances relatives estimées pour
toutes les zones par notre approche (soit avec le seul jeu de données standardisé ACT, soit en
combinant le jeu de données standardisées ACT et le jeu de données opportunistes LPO) et les
abondances relatives estimées en utilisant le jeu de données standardisé de référence, STOC.
Les deux premiéres lignes du Tableau 3.2 donnent la médiane de ces corrélations obtenues pour
chaque espéce, ainsi que leurs premier et dernier quartiles. Nous obtenons que ces médianes et
quartiles sont plus élevés en combinant les deux jeux de données ACT et LPO, ce qui illustre le
fait que les estimations obtenues en combinant les deux jeux de données sont plus précises que
celles obtenues en utilisant seulement le jeu de données standardisé.

Il s’avére que le jeu de données standardisé que nous utilisons est trés riche : du fait des
dix visites par zone et par année il est le résultat d’une intensité d’observation trés élevée,
ce qui n'est pas a priori nécessaire pour notre approche. Nous avons donc dans un deuxiéme
temps étudié dans quelle mesure 'amélioration des estimations apportée par la combinaison des
jeux de données se maintient lorsque le jeu de données standardisé est moins riche. Nous avons
pour cela réduit artificiellement le jeu de données ACT en sélectionnant aléatoirement une seule
visite par zone et en réduisant les données du jeu de données ACT a celles obtenues lors de ces
visites sélectionnées. La taille du jeu de données ACT est divisée environ par 18, suite & cette
opération. Les deux derniéres lignes du Tableau 3.2 comportent les mémes quantités que les
deux premiéres lignes, mais en remplagant le jeu de données standardisé ACT par ce nouveau
jeu de données artificiellement réduit et dont les capacités prédictives deviennent alors faibles
(corrélation quasiment nulle avec les estimations produites par le jeu de données de référence
STOC). Nous obtenons en revanche que la qualité des estimations obtenues en combinant les
deux jeux de données a trés peu diminué. Ces lignes illustrent en pratique 'intérét de notre
approche, déja énoncé dans le Théoréme 3.1 : combiner un jeu de données standardisées de
taille trés faible avec un jeu de données opportuniste permet d’estimer les abondances relatives
de plusieurs espéces de fagon plus satisfaisante et & moindre cotlit. La combinaison des jeux de
données permet en outre de donner des estimations pour les abondances relatives d’espéces qui
ne sont pas observées dans le jeu de données standardisé (deuxiéme colonne du Tableau 3.2).
Ces estimations sont aussi de meilleure qualité que celles obtenues par le seul jeu de données
standardisé, pour les espéces qu’il contient.

Des résultats similaires sont donnés dans le Tableau 3.3 pour le modéle avec structure spatiale
(3.2). Notons que les résultats des Tableaux 3.2 et 3.3 différent légérement pour le modeéle (3.1),
ce qui s’explique par des méthodes d’estimation différentes : maximum de vraisemblance pour
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le Tableau 3.2 et estimation Bayesienne avec prior non informatif pour le Tableau 3.3. Comme
précédemment nous obtenons que combiner les deux jeux de données et prendre en compte la
structure spatiale en habitat permet une amélioration des estimations.

Jeux de données utilisés Dans ACT Pas dans ACT
Standardisé 0.27 (0.13 - 0.49) —
Standardisé + opportuniste 0.55 (0.38 — 0.68) 0.35 (0.19 — 0.47)
Standardisé réduit 0.06 (-0.07 — 0.23) —

Standardisé réduit + opportuniste  0.54 (0.25 — 0.61)  0.28 (0.08 — 0.40)

TABLE 3.2 — Médiane (et premier et dernier quartiles entre parenthéses) des corrélations, pour
chaque espéce, entre abondances relatives estimées en utilisant notre approche d’une part et le
jeu de données de référence (STOC) d’autre part.

Données et modele Dans ACT Pas dans ACT
[Opp+Stand avec hab] | 0.49 (0.30-0.54) 0.39 (0.12-0.54)
[Stand only avec hab] | 0.29 (0.03-0.46) -

[Opp+Stand sans hab| | 0.44 (0.32-0.68) 0.31 (0.19-0.42)

TABLE 3.3 — Médiane des corrélations (ainsi que premier et dernier quartiles) entre les estimations
d’abondances relatives obtenues pour chaque espéce grace aux observations STOC seules d'une
part et grace a différentes approches d’autre part : |[Opp-+Stand avec hab| correspond a la prise
en compte de I'habitat et la combinaison des jeux de données, [Stand only avec hab| correspond a
la prise en compte de I'habitat et 1'utilisation du seul jeu de données standardisé, et [Opp-+Stand
sans hab| correspond a la combinaison des jeux de données mais sans prise en compte de 'habitat.

Cartes d’abondances relatives Cette section donne quelques résultats écologiques qui sont
un autre fruit de notre travail. La Figure 3.3 donne la carte d’abondance de la sitelle torchepot,
en utilisant les modeéles avec et sans prise en compte de ’habitat. Une telle carte peut bien
str étre donnée pour chaque espéce du jeu de données. Remarquons aussi que notre approche
pourrait aussi donner 1’évolution de cette carte au cours du temps, en remplagant les zones
spatiales par des couples "zone-année" par exemple. Cette analyse, couplée & I'estimation des
préférences de chaque espéce a chaque type d’habitat (présentée dans le prochain paragraphe),
serait pertinente dans le cadre de la prédiction de la réaction des espéces au réchauffement
climatique. Elle nécessiterait toutefois, pour plus d’intérét, d’avoir des données couvrant un plus
grand nombre d’années.
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Eurasian nuthatch (without habitat) Eurasian nuthatch (with habitat)

FIGURE 3.3 — Cartes d’abondances relatives de la sitelle torchepot avec ou sans prise en compte
de I'habitat. Pour chaque quadrat, le niveau de gris matérialise une version renormalisée entre (
et 1 de la quantité NZ’;Odel (i.e. ces niveaux de gris vont de 0 (abondance la plus faible, quadrat
blanc) & 1 (abondance la plus élevée, quadrat noir).

Estimation des préférences d’habitat Comme mentionné précédemment, un produit utile
de notre approche est I'estimation des préférences (S;n)1<n<m de chaque espéce i pour les diffé-
rents types d’habitats, qui sont des quantités trés importantes pour les écologues et qui requiérent
habituellement de gros efforts pour étre estimées (Lele ef al. (2013); Boyee et McDonald (1999)).
Dans la Figure 3.4 nous donnons & titre d’exemple les préférences que nous obtenons pour le pic
épeiche. Cette espéce est connue pour préférer les habitats forestiers, ce qui se retrouve dans nos

estimations.

— Préférences du Pic Epeiche

FIGURE 3.4 — Préférences (relatives) du pic épeiche pour les différents types d’habitats considéreés.
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3.5 Eléments de preuves

La preuve du Théoréme 3.1 repose sur 'analyse du modéle linéaire (3.3). Tout d’abord nous
montrons l'identifiabilité des paramétres de ce modeéle en montrant que sa matrice de régression
a un noyau de dimension I 4 .J 4 1 tel que les contraintes données juste aprés ’'Equation (3.3)
(qui correspondent a rappeler que I'on dispose d’un jeu de données standardisé pour lequel les
efforts d’observation sont connus, a constante multiplicative prés) permettent I'identifiabilité des
abondances relatives étudiées. La suite de la preuve consiste & exprimer ’estimateur de maximum
de vraisemblance de ces abondances relatives et a en étudier ’espérance et la variance, notamment
lorsque D'effort correspondant au jeu de données opportuniste tend vers I'infini.

3.6 Perspectives

Améliorations du modéle Le modéle que nous considérons suppose que les individus ob-
servés (ainsi que les observateurs) se comportent indépendamment les uns des autres. Il néglige
également le fait que les erreurs d’identifications peuvent créer des interactions entre les nombres
d’observations d’oiseaux de différentes espéces (plus fréquemment confondues 'une avec 'autre,
typiquement), et que ces interactions peuvent varier d’une zone a l'autre. Ces deux limites du
modéle peuvent respectivement étre résolues en remplacant la distribution de Poisson par une
autre distribution et en faisant dépendre la probabilité de détection d’une espéce de 'abondance
des autres espéces. Ce nouveau modeéle serait plus complexe & étudier mais conduirait & des
résultats plus réalistes et & une analyse intéressante des interactions entre individus et entre
espéces.

Combinaison de données pour la qualité de Pair Comme mentionné dans 'introduction
de ce chapitre, la situation dans laquelle les scientifiques ont accés & différents ensembles de don-
nées mesurant la méme quantité ou étudiant le méme phénoméne est désormais trés courante.
La combinaison de jeux de données au travers de modéles probabilistes dont les paramétres
peuvent étre inférés par des méthodes statistiques est donc une question mathématique intéres-
sante ayant de forts enjeux applicatifs. Je co-encadre actuellement la thése de doctorat d’Emma
Thulliez (INSA Rouen), avec Bruno Portier, et en collaboration d’une part avec Jean-Michel
Poggi (Université Paris-Saclay) et d’autre part avec ATMO Normandie qui est une association
chargée par 'Etat d’évaluer la qualité de I’air en Normandie. Un des objectifs de cette thése est
de produire des cartes de concentration de certains polluants dans l'air (comme le NOy ou les
particules fines). Pour ce faire, en prenant ’exemple du NOs (dioxyde d’azote), nous avons accés
A trois jeux de données :

— Des ensembles de cartes de concentration en INOs sur une zone donnée & différents instants,
qui sont des sorties de modéles physico-chimiques, prenant en compte 'intensité annuelle
du trafic, les émissions des entreprises, la forme des routes, ainsi que certaines données
météorologiques (la température, la vitesse du vent, 'humidité, etc...). Un exemple de telle
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carte, issue du modéle SIRANE (Soulhac ef al. (2017)), est donné dans la Figure 3.5, et
nous pouvons typiquement avoir accés & une carte par heure, sur une période donnée.
Notons que ces modéles physico-chimiques sont réguliérement améliorés, pour prendre en
compte de nouveaux phénomeénes. Ils négligent par ailleurs certaines spécificités locales,

comme l'altitude, la pente des rues, les travaux de voirie, etc...

— Des mesures de concentration en N Oy dans air réalisées par quelques (4, pour la métropole
de Rouen) stations de références, qui sont supposées fournir des mesures précises et non
biaisées de la vraie concentration, que nous cherchons a estimer. Ces stations fournissent
aussi des mesures de concentrations d’autres polluants ainsi que des mesures météorolo-
giques.

— Des mesures de concentration en NO; réalisées par un grand nombre (jusqu’a 70, pour
la métropole rouennaise) de micro-capteurs qui mesurent la méme concentration mais en
utilisant une technologie trés différente de celle des stations fixes. Ces micro-capteurs sont
beaucoup moins chers, mais leurs mesures sont moins précises que celles des stations fixes,
et elles sont également biaisées. La Figure 3.6 montre des mesures réalisées par un micro-
capteur durant un mois, ainsi que les estimations fournies par la carte STRANE a ’emplace-
ment de ce micro-capteur. Ces appareils fournissent également des mesures pour plusieurs
autres quantités, telles que la pression, la température, la vitesse du vent, ... Nous pourrons
aussi par la suite utiliser des mesures réalisées par des micro-capteurs mobiles qui ont été
installés récemment sur des bus de la métropole. Notons que la Figure 3.6 montre un chan-
gement de comportement du micro-capteur un peu aprés le milieu de la période considérée.
Ce changement indique que des approches consistant & calibrer les micro-capteurs en les
accolant temporairement & des stations fixes, qui sont souvent utilisées, ont peu de chances
d’étre performantes dans ce contexte.

F1GURE 3.5 — Un exemple de carte de concentration en NOs issue du modéle SIRANE.

Notre approche consiste & supposer que les résultats du modéle physico-chimique ne peuvent
pas étre exacts, car ce modéle fait certaines hypothéses, comme une altitude constante ou une
occupation du sol constante. Ils négligent généralement la présence de parcs et n’ont pas accés
a l'intensité précise du trafic, et a la présence de travaux de voirie, alors que ces caractéristiques
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spatio-temporelles jouent un role dans la qualité de I'air. Nous modélisons donc les biais de ce
modéle physico-chimique et estimons les paramétres de ce biais en utilisant les stations fixes
disponibles et les mesures des micro-capteurs. Cette combinaison de données de qualités diffé-
rentes est différente de celle rencontrée pour 'utilisation de programmes de science citoyenne
dans I’évaluation de 'abondance des espéces, mais nous traitons ces deux questions en utilisant
une approche de modélisation probabiliste intégrative similaire.

Retour a la génétique Avec Sophie Donnet (INRAE), Raphaél Leblois (INRAE), Miguel De
Navascués (INRAE), Julien Stoehr (CEREMADE, Université Paris Dauphine), nous souhaitons
développer des méthodes statistiques permettant de combiner au travers de modéles probabi-
listes des données génétiques et des données de comptage, de facon & améliorer I'estimation de
paramétres démographiques qui pourrait étre faite en utilisant seulement I'un des jeux de don-
nées. Ces données pourront étre des données issues de programme d’observations professionnels
ou citoyens, comme ceux que j'ai présentés dans la Section 3.2 de ce chapitre, ou bien provenir
de protocoles de capture-marquage-recapture par exemple. Les modéles de dynamique de popu-
lation qui pourront étre utilisés dans ce projet seront par exemple des modéles de naissance et
mort avec interaction du type de ceux étudiés dans le Chapitre 2 ou éventuellement des modéles
de génétique de population comme celui présenté dans le Chapitre 1. Pour ce projet nous avons
proposé un post-doctorat qui sera réalisé par Lucas Rey (Université Paris-Dauphine), et des
applications a I’étude de la dynamique d’espéces de ravageurs de cultures seront abordées dans
ce cadre. Cette derniére perspective pourra aussi rejoindre la perspective mentionnée en fin de
Chapitre 2 sur le controle de population d’insectes par technique de I'insecte stérile. En effet les
ravageurs de culture comme Drosophile Suzukii (la mouche du cerisier) sont des exemples d’es-
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péces pour lesquelles & la fois des données de comptage et des données de séquencage génétique
sont susceptibles d’étre disponibles. Comme ces données présentent a la fois des cotits et des in-
téréts différents, en termes d’inférence démographique, la question d’un éventuel arbitrage entre
les récoltes de ces deux types de données peut étre posée. Pour finir ce dernier sujet rejoint le
sujet de la theése d’Arnaud Becheler ( ( )) que j’ai co-encadrée avec Stéphane Dupas
(IRD, Gif-s/-Yvette) et qui portait sur le développement et I'implémentation d’un modeéle pour
la dynamique démo-génétique du frelon asiatique, dans un paysage structuré.
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Conclusion et bilan des perspectives

Durant les derniéres années je me suis intéressée, de facon principale, a la modélisation et
I’étude mathématique de I’évolution génétique des populations & reproduction sexuée et de la
biodiversité ainsi qu’a la combinaison de jeux de données. J’ai essayé de trouver un équilibre entre
la simplicité des modéles, qui permet leur étude mathématique et la compréhension essentielle des
phénoménes étudiés, et la complexité des modéles qui permet leur confrontation & des données
de facon pertinente. J’ai hate de poursuivre mon travail dans ces deux directions et de découvrir
de nouveaux sujets, de nouveaux enjeux, de nouvelles collaborations.

Les perspectives que j’ai développées a la fin de chaque chapitre portent d’abord sur I’étude de
la proportion de génome transmis dans les populations biparentales, dans la lignée des travaux
que j’ai présentés dans le Chapitre 1. J'aimerais notamment enrichir ce travail par I’étude de
I'impact de différentes formes de sélection sur la proportion de génome transmis par un individu,
mais aussi relier ce travail & des approches beaucoup plus appliquées qui consistent & estimer des
paramétres d’histoire démographique a partir de données génétiques. Ensuite, les travaux que
j’al présentés dans le Chapitre 2 et qui portent notamment sur ’étude des limites d’échelles et
du contréle des processus de naissance et mort avec interactions trouveront un débouché naturel
dans I’étude par Léo Micollet dans le cadre de sa thése, du controle de populations d’insectes par
technique de I'insecte stérile. Enfin la combinaison de jeux de données que j’ai présentée dans le
Chapitre 3 se prolongent d’une part dans la thése en cours d’Emma Thulliez, dans le cadre de
I’estimation de cartes de pollution de l'air a partir de mesures de différentes qualité, et d’autre
part sur la combinaison de données de comptages et de données de séquencages pour estimer les
paramétres démographiques d’une population, qui sera étudiée par Lucas Rey dans le cadre de
son post-doctorat. Ces sujets sont tres différents les uns des autres mais peuvent se rejoindre. En
particulier la technique de 'insecte stérile pourra avantageusement étre étudiée par combinaison
de données démographiques et génétiques.
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